211 research outputs found

    Acetonitrile in the atmosphere

    Get PDF

    The relation between paracetamol use and asthma:a GA2LEN European case-control study

    Get PDF
    Studies from the UK and USA suggest that frequent use of paracetamol (acetaminophen) may increase the risk of asthma, but data across Europe are lacking. As part of a multicentric case-control study organised by the Global Allergy and Asthma European Network (GA(2)LEN), it was examined whether or not frequent paracetamol use is associated with adult asthma across Europe. The network compared 521 cases with a diagnosis of asthma and reporting of asthma symptoms within the last 12 months with 507 controls with no diagnosis of asthma and no asthmatic symptoms within the last 12 months across 12 European centres. All cases and controls were selected from the same population, defined by age (2045 yrs) and place of residence. In a random effects meta-analysis, weekly use of paracetamol, compared with less frequent use, was strongly positively associated with asthma after controlling for confounders. There was no evidence for heterogeneity across centres. No association was seen between use of other analgesics and asthma. These data add to the increasing and consistent epidemiological evidence implicating frequent paracetamol use in asthma in diverse populations

    Absence of Membrane Phosphatidylcholine Does Not Affect Virulence and Stress Tolerance Phenotypes in the Opportunistic Pathogen Pseudomonas aeruginosa

    Get PDF
    During growth in presence of choline, both laboratory and clinical Pseudomonas aeruginosa strains synthesize phosphatidylcholine (PC), and PC makes up ∼4% of the total membrane phospholipid content. In all the strains tested, PC synthesis occurred only when choline is provided exogenously. Mutants defective in synthesis of PC were generated in the strain backgrounds PAO1 and PA14. Minimum inhibitory concentration studies testing sensitivity of PC-deficient strains towards various antibiotics and cationic antimicrobial peptides revealed no differences as compared to wild-type strains. Mutants incapable of synthesizing PC were also found to be unaffected in motility and biofilm formation on abiotic surfaces, colonization of biotic surfaces and virulence in a mouse infection model. A global phenotypic microarray was further used to identify conditions wherein membrane PC may play a role of in P. aeruginosa. No culture conditions were identified wherein wild-type and PC-deficient mutants showed phenotypic differences. Membrane PC may serve a highly specific role during P. aeruginosa interactions with its eukaryotic hosts based on all the clinical strains tested retaining the ability to synthesize it during availability of choline

    CoronaHiT: high-throughput sequencing of SARS-CoV-2 genomes.

    Get PDF
    We present CoronaHiT, a platform and throughput flexible method for sequencing SARS-CoV-2 genomes (≤ 96 on MinION or > 96 on Illumina NextSeq) depending on changing requirements experienced during the pandemic. CoronaHiT uses transposase-based library preparation of ARTIC PCR products. Method performance was demonstrated by sequencing 2 plates containing 95 and 59 SARS-CoV-2 genomes on nanopore and Illumina platforms and comparing to the ARTIC LoCost nanopore method. Of the 154 samples sequenced using all 3 methods, ≥ 90% genome coverage was obtained for 64.3% using ARTIC LoCost, 71.4% using CoronaHiT-ONT and 76.6% using CoronaHiT-Illumina, with almost identical clustering on a maximum likelihood tree. This protocol will aid the rapid expansion of SARS-CoV-2 genome sequencing globally.The sequencing costs were funded by the COVID-19 Genomics UK (COG-UK) Consortium which is supported by funding from the Medical Research Council (MRC) part of UK Research & Innovation (UKRI), the National Institute of Health Research (NIHR) and Genome Research Limited, operating as the Wellcome Sanger Institute

    Improving algorithms and uncertainty estimates for satellite NO<sub>2</sub> retrievals: results from the quality assurance for the essential climate variables (QA4ECV) project

    Get PDF
    Global observations of tropospheric nitrogen dioxide (NO2) columns have been shown to be feasible from space, but consistent multi-sensor records do not yet exist, nor are they covered by planned activities at the international level. Harmonised, multi-decadal records of NO2 columns and their associated uncertainties can provide crucial information on how the emissions and concentrations of nitrogen oxides evolve over time. Here we describe the development of a new, community best-practice NO2 retrieval algorithm based on a synthesis of existing approaches. Detailed comparisons of these approaches led us to implement an enhanced spectral fitting method for NO2, a 1°&thinsp; × &thinsp;1° TM5-MP data assimilation scheme to estimate the stratospheric background and improve air mass factor calculations. Guided by the needs expressed by data users, producers, and WMO GCOS guidelines, we incorporated detailed per-pixel uncertainty information in the data product, along with easily traceable information on the relevant quality aspects of the retrieval. We applied the improved QA4ECV NO2 algorithm to the most current level-1 data sets to produce a complete 22-year data record that includes GOME (1995&ndash;2003), SCIAMACHY (2002&ndash;2012), GOME-2(A) (2007 onwards) and OMI (2004 onwards). The QA4ECV NO2 spectral fitting recommendations and TM5-MP stratospheric column and air mass factor approach are currently also applied to S5P-TROPOMI. The uncertainties in the QA4ECV tropospheric NO2 columns amount to typically 40&thinsp;% over polluted scenes. The first validation results of the QA4ECV OMI NO2 columns and their uncertainties over Tai'an, China, in June 2006 suggest a small bias (&minus;2&thinsp;%) and better precision than suggested by uncertainty propagation. We conclude that our improved QA4ECV NO2 long-term data record is providing valuable information to quantitatively constrain emissions, deposition, and trends in nitrogen oxides on a global scale.</p

    Large-scale sequencing of SARS-CoV-2 genomes from one region allows detailed epidemiology and enables local outbreak management.

    Get PDF
    The COVID-19 pandemic has spread rapidly throughout the world. In the UK, the initial peak was in April 2020; in the county of Norfolk (UK) and surrounding areas, which has a stable, low-density population, over 3200 cases were reported between March and August 2020. As part of the activities of the national COVID-19 Genomics Consortium (COG-UK) we undertook whole genome sequencing of the SARS-CoV-2 genomes present in positive clinical samples from the Norfolk region. These samples were collected by four major hospitals, multiple minor hospitals, care facilities and community organizations within Norfolk and surrounding areas. We combined clinical metadata with the sequencing data from regional SARS-CoV-2 genomes to understand the origins, genetic variation, transmission and expansion (spread) of the virus within the region and provide context nationally. Data were fed back into the national effort for pandemic management, whilst simultaneously being used to assist local outbreak analyses. Overall, 1565 positive samples (172 per 100 000 population) from 1376 cases were evaluated; for 140 cases between two and six samples were available providing longitudinal data. This represented 42.6 % of all positive samples identified by hospital testing in the region and encompassed those with clinical need, and health and care workers and their families. In total, 1035 cases had genome sequences of sufficient quality to provide phylogenetic lineages. These genomes belonged to 26 distinct global lineages, indicating that there were multiple separate introductions into the region. Furthermore, 100 genetically distinct UK lineages were detected demonstrating local evolution, at a rate of ~2 SNPs per month, and multiple co-occurring lineages as the pandemic progressed. Our analysis: identified a discrete sublineage associated with six care facilities; found no evidence of reinfection in longitudinal samples; ruled out a nosocomial outbreak; identified 16 lineages in key workers which were not in patients, indicating infection control measures were effective; and found the D614G spike protein mutation which is linked to increased transmissibility dominates the samples and rapidly confirmed relatedness of cases in an outbreak at a food processing facility. The large-scale genome sequencing of SARS-CoV-2-positive samples has provided valuable additional data for public health epidemiology in the Norfolk region, and will continue to help identify and untangle hidden transmission chains as the pandemic evolves.The sequencing costs were funded by the COVID-19 Genomics UK (COG-UK) Consortium which is supported by funding from the Medical Research Council (MRC) part of UK Research and Innovation (UKRI), the National Institute of Health Research (NIHR) and Genome Research Limited, operating as the Wellcome Sanger Institute
    • …
    corecore