15,148 research outputs found

    Thermodynamics of (2+1)-flavor QCD: Confronting Models with Lattice Studies

    Full text link
    The Polyakov-quark-meson (PQM) model, which combines chiral as well as deconfinement aspects of strongly interacting matter is introduced for three light quark flavors. An analysis of the chiral and deconfinement phase transition of the model and its thermodynamics at finite temperatures is given. Three different forms of the effective Polyakov loop potential are considered. The findings of the (2+1)-flavor model investigations are confronted to corresponding recent QCD lattice simulations of the RBC-Bielefeld, HotQCD and Wuppertal-Budapest collaborations. The influence of the heavier quark masses, which are used in the lattice calculations, is taken into account. In the transition region the bulk thermodynamics of the PQM model agrees well with the lattice data.Comment: 13 pages, 7 figures, 3 tables; minor changes, final version to appear in Phys. Rev.

    Memory device for two-dimensional radiant energy array computers

    Get PDF
    A memory device for two dimensional radiant energy array computers was developed, in which the memory device stores digital information in an input array of radiant energy digital signals that are characterized by ordered rows and columns. The memory device contains a radiant energy logic storing device having a pair of input surface locations for receiving a pair of separate radiant energy digital signal arrays and an output surface location adapted to transmit a radiant energy digital signal array. A regenerative feedback device that couples one of the input surface locations to the output surface location in a manner for causing regenerative feedback is also include

    Fluctuations and the QCD phase diagram

    Full text link
    In this contribution the role of quantum fluctuations for the QCD phase diagram is discussed. This concerns in particular the importance of the matter back-reaction to the gluonic sector. The impact of these fluctuations on the location of the confinement/deconfinement and the chiral transition lines as well as their interrelation are investigated. Consequences of our findings for the size of a possible quarkyonic phase and location of a critical endpoint in the phase diagram are drawn.Comment: 7 pages, 3 figures, to appear in Physics of Atomic Nucle

    Research and development in cds photovoltaic film cells final report

    Get PDF
    Fabrication of lightweight, flexible, high efficiency, low cost, thin film, cadmium sulfide solar cells to operate for long periods in space without appreciable degradatio

    Digital voltage-controlled oscillator

    Get PDF
    Digital voltage-controlled oscillator generates a variable frequency signal controlled linearly about a center frequency with high stability and is phase controlled by an applied voltage. Integration ahead of the digital circuitry provides linear operation with control voltage having appreciable noise components

    Dynamics of high-bypass-engine thrust reversal using a variable-pitch fan

    Get PDF
    The test program demonstrated that successful and rapid forward-to reverse-thrust transients can be performed without any significant engine operational limitations for fan blade pitch changes through either feather pitch or flat pitch. For through-feather-pitch operation with a flight inlet, fan stall problems were encountered, and a fan blade overshoot technique was used to establish reverse thrust

    Modeling the momentum distributions of annihilating electron-positron pairs in solids

    Get PDF
    Measuring the Doppler broadening of the positron annihilation radiation or the angular correlation between the two annihilation gamma quanta reflects the momentum distribution of electrons seen by positrons in the material.Vacancy-type defects in solids localize positrons and the measured spectra are sensitive to the detailed chemical and geometric environments of the defects. However, the measured information is indirect and when using it in defect identification comparisons with theoretically predicted spectra is indispensable. In this article we present a computational scheme for calculating momentum distributions of electron-positron pairs annihilating in solids. Valence electron states and their interaction with ion cores are described using the all-electron projector augmented-wave method, and atomic orbitals are used to describe the core states. We apply our numerical scheme to selected systems and compare three different enhancement (electron-positron correlation) schemes previously used in the calculation of momentum distributions of annihilating electron-positron pairs within the density-functional theory. We show that the use of a state-dependent enhancement scheme leads to better results than a position-dependent enhancement factor in the case of ratios of Doppler spectra between different systems. Further, we demonstrate the applicability of our scheme for studying vacancy-type defects in metals and semiconductors. Especially we study the effect of forces due to a positron localized at a vacancy-type defect on the ionic relaxations.Comment: Submitted to Physical Review B on September 1 2005. Revised manuscript submitted on November 14 200

    Vertical laser beam propagation through the troposphere

    Get PDF
    The characteristics of the earth's atmosphere and its effects upon laser beams was investigated in a series of balloon borne, optical propagation experiments. These experiments were designed to simulate the space to ground laser link. An experiment to determine the amplitude fluctuation, commonly called scintillation, caused by the atmosphere was described
    • …
    corecore