3,211 research outputs found

    Effect of disjoining pressure in a thin film equation with\ud non-uniform forcing

    Get PDF
    We explore the effect of disjoining pressure on a thin film equation in the presence of a non-uniform body force, motivated by a model describing the reverse draining of a magnetic film. To this end, we use a combination of numerical investigations and analytical considerations. The disjoining pressure has a regularizing influence on the evolution of the system and appears to select a single steady-state solution for fixed height boundary conditions; this is in contrast with the existence of a continuum of locally attracting solutions that exist in the absence of disjoining pressure for the same boundary conditions. We numerically implement matched asymptotics expansions to construct equilibrium solutions and also investigate how they behave as the disjoining pressure is sent to zero. Finally, we consider the effect of the competition between forcing and disjoining pressure on the coarsening dynamics of the thin film for fixed contact angle boundary conditions

    Expanded mixed multiscale finite element methods and their applications for flows in porous media

    Get PDF
    We develop a family of expanded mixed Multiscale Finite Element Methods (MsFEMs) and their hybridizations for second-order elliptic equations. This formulation expands the standard mixed Multiscale Finite Element formulation in the sense that four unknowns (hybrid formulation) are solved simultaneously: pressure, gradient of pressure, velocity and Lagrange multipliers. We use multiscale basis functions for the both velocity and gradient of pressure. In the expanded mixed MsFEM framework, we consider both cases of separable-scale and non-separable spatial scales. We specifically analyze the methods in three categories: periodic separable scales, GG- convergence separable scales, and continuum scales. When there is no scale separation, using some global information can improve accuracy for the expanded mixed MsFEMs. We present rigorous convergence analysis for expanded mixed MsFEMs. The analysis includes both conforming and nonconforming expanded mixed MsFEM. Numerical results are presented for various multiscale models and flows in porous media with shales to illustrate the efficiency of the expanded mixed MsFEMs.Comment: 33 page

    Future beam experiments in the magnetosphere with plasma contactors: The electron collection and ion emission routes

    Full text link
    Experiments where a high‐voltage electron beam emitted by a spacecraft in the low‐density magnetosphere is used to probe the magnetospheric configuration could greatly enhance our understanding of the near‐Earth environment. Their challenge, however, resides in the fact that the background magnetospheric plasma cannot provide a return current that balances the electron beam current without charging the spacecraft to such high potential that in practice prevents beam emission. In order to overcome this problem, a possible solution is based on the emission of a high‐density contactor plasma by the spacecraft prior to and after the beam. We perform particle‐in‐cell simulations to investigate the conditions under which a high‐voltage electron beam can be emitted from a magnetospheric spacecraft, comparing two possible routes that rely on the high‐density contactor plasma. The first is an “electron collection” route, where the contactor has lower current than the electron beam and is used with the goal of connecting to the background plasma and collecting magnetospheric electrons over a much larger area than that allowed by the spacecraft alone. The second is an “ion emission” route, where the contactor has higher current than the electron beam. Ion emission is then enabled over the large quasi‐spherical area of the contactor cloud, thus overcoming the space charge limits typical of ion beam emission. Our results indicate that the ion emission route offers a pathway for performing beam experiments in the low‐density magnetosphere, while the electron collection route is not viable because the contactor fails to draw a large neutralizing current from the background.Key PointsThe ion emission route is credible for beam experiments in the magnetosphereThe electron collection route is not viableThe background plasma facilitates beam emissionPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111985/1/jgra51700.pd

    Impact of the European Clinical Trials Directive on prospective academic clinical trials associated with BMT

    Get PDF
    The European Clinical Trials Directive (EU 2001; 2001/20/EC) was introduced to improve the efficiency of commercial and academic clinical trials. Concerns have been raised by interested organizations and institutions regarding the potential for negative impact of the Directive on non-commercial European clinical research. Interested researchers within the European Group for Blood and Marrow Transplantation (EBMT) were surveyed to determine whether researcher experiences confirmed this view. Following a pilot study, an internet-based questionnaire was distributed to individuals in key research positions in the European haemopoietic SCT community. Seventy-one usable questionnaires were returned from participants in different EU member states. The results indicate that the perceived impact of the European Clinical Trials Directive has been negative, at least in the research areas of interest to the EBMT

    Elastic cavitation, tube hollowing, and differential growth in plants and biological tissues

    Get PDF
    Elastic cavitation is a well-known physical process by which elastic materials under stress can open cavities. Usually, cavitation is induced by applied loads on the elastic body. However, growing materials may generate stresses in the absence of applied loads and could induce cavity opening. Here, we demonstrate the possibility of spontaneous growth-induced cavitation in elastic materials and consider the implications of this phenomenon to biological tissues and in particular to the problem of schizogenous aerenchyma formation

    Generation of directional, coherent matter beams through dynamical instabilities in Bose-Einstein condensates

    Full text link
    We present a theoretical analysis of a coupled, two-state Bose-Einstein condensate with non-equal scattering lengths, and show that dynamical instabilities can be excited. We demonstrate that these instabilities are exponentially amplified resulting in highly-directional, oppositely-propagating, coherent matter beams at specific momenta. To accomplish this we prove that the mean field of our system is periodic, and extend the standard Bogoliubov approach to consider a time-dependent, but cyclic, background. This allows us to use Floquet's theorem to gain analytic insight into such systems, rather than employing the usual Bogoliubov-de Gennes approach, which is usually limited to numerical solutions. We apply our theory to the metastable Helium atom laser experiment of Dall et al. [Phys. Rev. A 79, 011601(R) (2009)] and show it explains the anomalous beam profiles they observed. Finally we demonstrate the paired particle beams will be EPR-entangled on formation.Comment: Corrected reference

    Using SOLPS to confirm the importance of total flux expansion in Super-X divertors

    Get PDF
    We show that a central characteristic of Super-X divertors, total flux expansion f R (defined as the ratio of the elementary area normal to the magnetic field at the target to that at the X-point), significantly changes the characteristics of the target plasma for fixed upstream conditions. To isolate the effect of total flux expansion from other effects, we utilise SOLPS-5.0 simulations of an isolated slot divertor leg in a minimally complex, rectangular geometry. The grid is rotated outwards about a fixed X-point in order to perform a scan in which only the total flux expansion increases, by means of a decrease in the target magnetic field at higher major radius. We find that if the SOL remains in the attached, conduction-limited regime throughout the scan, the target electron density scales approximately as , while the target electron temperature scales approximately as , in good agreement with the modified two-point model presented in Petrie et al (2013 Nucl. Fusion 53 113024). If, however, the SOL transitions from the sheath-limited regime to the conduction-limited regime during the scan, the simulated scalings of target electron temperature and density are weaker than predicted by the modified two-point model. The upstream density for transition from sheath- to conduction-limited regimes is found to scale approximately with , in agreement with the modified two-point model. Assessing upstream-density-driven detachment onset, we find that the target electron temperature at which target density rollover occurs (∼0.6 eV) is independent of f R. Given this, the modified two-point model predicts a halving of the upstream (and target) densities at which rollover occurs when f R is doubled, in good agreement with the simulation results

    Damaging Cardiac and Cancer Genetic Variants in the LVAD Population

    Get PDF
    Background: Next generation sequencing technology, coupled with population genetic databases, have made broad genetic evaluation relatively inexpensive and widely available. Our objective was to assess the prevalence of potentially damaging cancer and cardiac gene variants in advanced non-ischemic cardiomyopathy patients. Methods: Explanted human heart tissue procured at LVAD placement was obtained from the University of Nebraska Medical Center Heart Tissue Bank. Genomic DNA was isolated from tissues and amplified by PCR using targeted ampliseq primer pools from an inherited disease panel. Individual libraries were amplified by emulsion PCR on Ion Sphere particles and sequencing was performed on a PGM sequencer (Ion torrent) using the Ion 316 chip. The Ion Torrent browser suite was used to map the reads and call the variants. The identified single nucleotide polymorphisms, insertions, and deletions were then annotated and characterized with ANNOVAR. Non-synonymous mutations with a population frequency of less than or equal to 1% were identified and analyzed utilizing an open source integrative genomics viewer. Amino acid substitution effects on protein function were determined by a bioinformatics algorithm. Myocardial recovery was defined as an improvement in EF to greater than 45% at three months post implant. Results: Our sample population included 12 males and 2 females with an average age of 49 and an average EF at presentation of 17%. Damaging cardiac gene variants were present in 11/14 patients. Only 1 of the 11 patients with damaging cardiac gene variants improved their ejection fraction to greater than 45% post LVAD. Two of the 2 patients without mutations improved their ejection fraction to greater than 45%, p-value=.04. Nine of the 14 patients in this population had damaging oncogene mutations. Conclusions: Damaging variants in cancer and cardiac genes are common in end-stage non-ischemic cardiomyopathy patients undergoing LVAD placement. Genetic variation likely contributes to disease progression and cancer risk
    corecore