9,573 research outputs found

    Two loop detection mechanisms: a comparison

    Get PDF
    In order to compare two loop detection mechanisms we describe two calculi for theorem proving in intuitionistic propositional logic. We call them both MJ Hist, and distinguish between them by description as `Swiss' or `Scottish'. These calculi combine in different ways the ideas on focused proof search of Herbelin and Dyckhoff & Pinto with the work of Heuerding emphet al on loop detection. The Scottish calculus detects loops earlier than the Swiss calculus but at the expense of modest extra storage in the history. A comparison of the two approaches is then given, both on a theoretic and on an implementational level

    Superheated Droplet Detectors as CDM Detectors: The SIMPLE Experiment

    Get PDF
    Superheated Droplet Detectors (SDDs) are becoming commonplace in neutron personnel dosimetry. Their total insensitivity to minimum ionizing radiation (while responsive to nuclear recoils of energies ~ few keV), together with their low cost, ease of production, and operation at room temperature and 1 atm makes them ideal for Cold Dark Matter (CDM) searches. SDD's are optimal for the exploration of the spin-dependent neutralino coupling due to their high fluorine content. The status of SIMPLE (Superheated Instrument for Massive ParticLe Experiments) is presented. Under realistic background considerations, we expect an improvement in the present Cold Dark Matter sensitivity of 2-3 orders of magnitude after ~1 kg-y of data acquisition.Comment: 6 pages, including 4 figures. To appear in the Proceedings of the Intl. Workshop on the Identification of Dark Matter (Sheffield, Sept. 96

    Polarization state of the optical near-field

    Full text link
    The polarization state of the optical electromagnetic field lying several nanometers above complex dielectric structures reveals the intricate light-matter interaction that occurs in this near-field zone. This information can only be extracted from an analysis of the polarization state of the detected light in the near-field. These polarization states can be calculated by different numerical methods well-suited to near--field optics. In this paper, we apply two different techniques (Localized Green Function Method and Differential Theory of Gratings) to separate each polarisation component associated with both electric and magnetic optical near-fields produced by nanometer sized objects. The analysis is carried out in two stages: in the first stage, we use a simple dipolar model to achieve insight into the physical origin of the near-field polarization state. In the second stage, we calculate accurate numerical field maps, simulating experimental near-field light detection, to supplement the data produced by analytical models. We conclude this study by demonstrating the role played by the near-field polarization in the formation of the local density of states.Comment: 9 pages, 11 figures, accepted for publication in Phys. Rev.

    Evidence for a circumplanetary disk around protoplanet PDS 70 b

    Full text link
    We present the first observational evidence for a circumplanetary disk around the protoplanet PDS~70~b, based on a new spectrum in the KK band acquired with VLT/SINFONI. We tested three hypotheses to explain the spectrum: Atmospheric emission from the planet with either (1) a single value of extinction or (2) variable extinction, and (3) a combined atmospheric and circumplanetary disk model. Goodness-of-fit indicators favour the third option, suggesting circumplanetary material contributing excess thermal emission --- most prominent at λ2.3μ\lambda \gtrsim 2.3 \mum. Inferred accretion rates (107.8\sim 10^{-7.8}--107.3MJ10^{-7.3} M_J yr1^{-1}) are compatible with observational constraints based on the Hα\alpha and Brγ\gamma lines. For the planet, we derive an effective temperature of 1500--1600 K, surface gravity log(g)4.0\log(g)\sim 4.0, radius 1.6RJ\sim 1.6 R_J, mass 10MJ\sim 10 M_J, and possible thick clouds. Models with variable extinction lead to slightly worse fits. However, the amplitude (ΔAV3\Delta A_V \gtrsim 3mag) and timescale of variation (\lesssim~years) required for the extinction would also suggest circumplanetary material.Comment: 8 pages, 2 figures, 1 table. This is a pre-copyedited, author-produced PDF of an article accepted for publication in ApJL on 2019 May 1

    beta Pic b position relative to the Debris Disk

    Full text link
    Context. We detected in 2009 a giant, close-by planet orbiting {\beta} Pic, a young star surrounded with a disk, extensively studied for more than 20 years. We showed that if located on an inclined orbit, the planet could explain several peculiarities of {\beta} Pictoris system. However, the available data did not permit to measure the inclination of {\beta} Pic b with respect to the disk, and in particular to establish in which component of the disk - the main, extended disk or the inner inclined component/disk-, the planet was located. Comparison between the observed planet position and the disk orientation measured on previous imaging data was not an option because of potential biases in the measurements. Aims. Our aim is to measure precisely the planet location with respect to the dust disk using a single high resolution image, and correcting for systematics or errors that degrades the precision of the disk and planet relative position measurements. Methods. We gathered new NaCo data at Ks band, with a set-up optimized to derive simultaneously the orientation(s) of the disk(s) and that of the planet. Results. We show that the projected position of {\beta} Pic b is above the midplane of the main disk. With the current data and knowledge on the system, this implies that {\beta} Pic b cannot be located in the main disk. The data rather suggest the planet being located in the inclined component.Comment: 13 pages, 6 figures, to appear in Astronomy and Astrophysic

    Sparse aperture masking at the VLT II. Detection limits for the eight debris disks stars β\beta Pic, AU Mic, 49 Cet, η\eta Tel, Fomalhaut, g Lup, HD181327 and HR8799

    Full text link
    Context. The formation of planetary systems is a common, yet complex mechanism. Numerous stars have been identified to possess a debris disk, a proto-planetary disk or a planetary system. The understanding of such formation process requires the study of debris disks. These targets are substantial and particularly suitable for optical and infrared observations. Sparse Aperture masking (SAM) is a high angular resolution technique strongly contributing to probe the region from 30 to 200 mas around the stars. This area is usually unreachable with classical imaging, and the technique also remains highly competitive compared to vortex coronagraphy. Aims. We aim to study debris disks with aperture masking to probe the close environment of the stars. Our goal is either to find low mass companions, or to set detection limits. Methods. We observed eight stars presenting debris disks ( β\beta Pictoris, AU Microscopii, 49 Ceti, η\eta Telescopii, Fomalhaut, g Lupi, HD181327 and HR8799) with SAM technique on the NaCo instrument at the VLT. Results. No close companions were detected using closure phase information under 0.5 of separation from the parent stars. We obtained magnitude detection limits that we converted to Jupiter masses detection limits using theoretical isochrones from evolutionary models. Conclusions. We derived upper mass limits on the presence of companions in the area of few times the diffraction limit of the telescope around each target star.Comment: 7 pages, All magnitude detection limits maps are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5

    Atomic diffraction from nanostructured optical potentials

    Full text link
    We develop a versatile theoretical approach to the study of cold-atom diffractive scattering from light-field gratings by combining calculations of the optical near-field, generated by evanescent waves close to the surface of periodic nanostructured arrays, together with advanced atom wavepacket propagation on this optical potential.Comment: 8 figures, 10 pages, submitted to Phys. Rev.

    KMOS LENsing Survey (KLENS) : morpho-kinematic analysis of star-forming galaxies at z2z \sim 2

    Get PDF
    We present results from the KMOS lensing survey-KLENS which is exploiting gravitational lensing to study the kinematics of 24 star forming galaxies at 1.4<z<3.51.4<z<3.5 with a median mass of log(M/M)=9.6\rm log(M_\star/M_\odot)=9.6 and median star formation rate (SFR) of 7.5Myr1\rm 7.5\,M_\odot\,yr^{-1}. We find that 25% of these low-mass/low-SFR galaxies are rotation dominated, while the majority of our sample shows no velocity gradient. When combining our data with other surveys, we find that the fraction of rotation dominated galaxies increases with the stellar mass, and decreases for galaxies with a positive offset from the main sequence. We also investigate the evolution of the intrinsic velocity dispersion, σ0\sigma_0, as a function of the redshift, zz, and stellar mass, M\rm M_\star, assuming galaxies in quasi-equilibrium (Toomre Q parameter equal to 1). From the zσ0z-\sigma_0 relation, we find that the redshift evolution of the velocity dispersion is mostly expected for massive galaxies (log(M/M)>10\rm log(M_\star/M_\odot)>10). We derive a Mσ0\rm M_\star-\sigma_0 relation, using the Tully-Fisher relation, which highlights that a different evolution of the velocity dispersion is expected depending on the stellar mass, with lower velocity dispersions for lower masses, and an increase for higher masses, stronger at higher redshift. The observed velocity dispersions from this work and from comparison samples spanning 0<z<3.50<z<3.5 appear to follow this relation, except at higher redshift (z>2z>2), where we observe higher velocity dispersions for low masses (log(M/M)9.6\rm log(M_\star/M_\odot)\sim 9.6) and lower velocity dispersions for high masses (log(M/M)10.9\rm log(M_\star/M_\odot)\sim 10.9) than expected. This discrepancy could, for instance, suggest that galaxies at high-zz do not satisfy the stability criterion, or that the adopted parametrisation of the specific star formation rate and molecular properties fail at high redshift.Comment: Accepted for publication in A&A, 21 pages, 10 figure
    corecore