791 research outputs found

    Deep MERLIN 5GHz Radio Imaging of Supernova Remnants in the M82 Starburst

    Full text link
    The results of an extremely deep, 8-day long observation of the central kpc of the nearby starburst galaxy M82 using MERLIN (Multi-Element Radio Linked Interferometer Network) at 5 GHz are presented. The 17E-06 Jy/beam, rms noise level in the naturally weighted image make it the most sensitive high resolution radio image of M82 made to date. Over 50 discrete sources are detected, the majority of which are supernova remnants, but with 13 identified as HII regions. Sizes, flux densities and radio brightnesses are given for all of the detected sources, which are all well resolved with a majority showing shell or partial shell structures. Those sources within the sample which are supernova remnants have diameters ranging from 0.3 to 6.7 pc, with a mean size of 2.9 pc. From a comparison with previous MERLIN 5 GHz observations made in July 1992, which gives a 9.75 year timeline, it has been possible to measure the expansion velocities of ten of the more compact sources, eight of which have not been measured before. These derived expansion velocities range between 2200 and 10500 km/s.Comment: 34 pages, 10 figures. Accepted by MNRA

    Second Epoch Global VLBI Observations of Compact Radio Sources in the M82 Starburst Galaxy

    Full text link
    We have presented the results of a second epoch of global Very Long Baseline Interferometry observations, taken on 23 February 2001 at a wavelength of 18 cm, of the central kiloparsec of the nearby starburst galaxy Messier 82. These observations were aimed at studying the structural and flux evolution of some of the compact radio sources in the central region that have been identified as supernova remnants. The objects 41.95+575 and 43.31+592 have been studied, expansion velocities of 2500 +/- 1200 km/s and 7350 +/- 2100 km/s respectively have been derived. Flux densities of 31.1 +/- 0.3 mJy and 17.4 +/- 0.3 mJy have been measured for the two objects. These results are consistent with measurements and predictions from previous epochs.Comment: 5 pages, 3 figures. To be published on the accompanying CD of the Proceedings of IAU Colloquium 192: Supernova

    Tests of star formation metrics in the low metallicity galaxy NGC 5253 using ALMA observations of H30α\alpha line emission

    Full text link
    We use Atacama Large Millimeter/submillimeter Array (ALMA) observations of H30α\alpha (231.90 GHz) emission from the low metallicity dwarf galaxy NGC 5253 to measure the star formation rate (SFR) within the galaxy and to test the reliability of SFRs derived from other commonly-used metrics. The H30α\alpha emission, which originates mainly from the central starburst, yields a photoionizing photon production rate of (1.9±\pm0.3)×\times1052^{52} s1^{-1} and an SFR of 0.087±\pm0.013 M_\odot yr1^{-1} based on conversions that account for the low metallicity of the galaxy and for stellar rotation. Among the other star formation metrics we examined, the SFR calculated from the total infrared flux was statistically equivalent to the values from the H30α\alpha data. The SFR based on previously-published versions of the Hα\alpha flux that were extinction corrected using Paα\alpha and Paβ\beta lines were lower than but also statistically similar to the H30α\alpha value. The mid-infrared (22 μ\mum) flux density and the composite star formation tracer based on Hα\alpha and mid-infrared emission give SFRs that were significantly higher because the dust emission appears unusually hot compared to typical spiral galaxies. Conversely, the 70 and 160 μ\mum flux densities yielded SFR lower than the H30α\alpha value, although the SFRs from the 70 μ\mum and H30α\alpha data were within 1-2σ\sigma of each other. While further analysis on a broader range of galaxies are needed, these results are instructive of the best and worst methods to use when measuring SFR in low metallicity dwarf galaxies like NGC 5253.Comment: 14 pages, 5 figures, accepted for publication in MNRA

    15 years of VLBI observations of two compact radio sources in Messier 82

    Full text link
    We present the results of a second epoch of 18cm global Very Long-Baseline Interferometry (VLBI) observations, taken on 23 February 2001, of the central kiloparsec of the nearby starburst galaxy Messier 82. These observations further investigate the structural and flux evolution of the most compact radio sources in the central region of M82. The two most compact radio objects in M82 have been investigated (41.95+575 and 43.31+592). Using this recent epoch of data in comparison with our previous global VLBI observations and two earlier epochs of European VLBI Network observations we measure expansion velocities in the range of 1500-2000km/s for 41.95+575, and 9000-11000km/s for 43.31+592 using various independent methods. In each case the measured remnant expansion velocities are significantly larger than the canonical expansion velocity (500km/s) of supernova remnants within M82 predicted from theoretical models. In this paper we discuss the implications of these measured expansion velocities with respect to the high density environment that the SNR are expected to reside in within the centre of the M82 starburst.Comment: Accepted for publication in MNRAS, 9 pages, 8 figure

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    Nowhere to Hide: Radio-faint AGN in the GOODS-N field. I. Initial catalogue and radio properties

    Get PDF
    (Abridged) Conventional radio surveys of deep fields ordinarily have arc-second scale resolutions often insufficient to reliably separate radio emission in distant galaxies originating from star-formation and AGN-related activity. Very long baseline interferometry (VLBI) can offer a solution by identifying only the most compact radio emitting regions in galaxies at cosmological distances where the high brightness temperatures (in excess of 10510^5 K) can only be reliably attributed to AGN activity. We present the first in a series of papers exploring the faint compact radio population using a new wide-field VLBI survey of the GOODS-N field. The unparalleled sensitivity of the European VLBI Network (EVN) will probe a luminosity range rarely seen in deep wide-field VLBI observations, thus providing insights into the role of AGN to radio luminosities of the order 1022 WHz110^{22}~\mathrm{W\,Hz^{-1}} across cosmic time. The newest VLBI techniques are used to completely cover an entire 7'.5 radius area to milliarcsecond resolutions, while bright radio sources (S>0.1S > 0.1 mJy) are targeted up to 25 arcmin from the pointing centre. Multi-source self-calibration, and a primary beam model for the EVN array are used to correct for residual phase errors and primary beam attenuation respectively. This paper presents the largest catalogue of VLBI detected sources in GOODS-N comprising of 31 compact radio sources across a redshift range of 0.11-3.44, almost three times more than previous VLBI surveys in this field. We provide a machine-readable catalogue and introduce the radio properties of the detected sources using complementary data from the e-MERLIN Galaxy Evolution survey (eMERGE).Comment: 15 pages, 8 figures, accepted in A&A. Machine-readable table available upon reques

    The nature of supernovae 2010O and 2010P in Arp 299 - II. Radio emission

    Get PDF
    We report radio observations of two stripped-envelope supernovae (SNe), 2010O and 2010P, which exploded within a few days of each other in the luminous infrared galaxy Arp 299. Whilst SN 2010O remains undetected at radio frequencies, SN 2010P was detected (with an astrometric accuracy better than 1 milli arcsec in position) in its optically thin phase in epochs ranging from ~1 to ~3yr after its explosion date, indicating a very slow radio evolution and a strong interaction of the SN ejecta with the circumstellar medium. Our late-time radio observations toward SN 2010P probe the dense circumstellar envelope of this SN, and imply a mass-loss rate (Msun/yr) to wind velocity (in units of 10 km/s) ratio of (3.0-5.1)E-05, with a 5 GHz peak luminosity of ~1.2E+27 erg/s/Hz on day ~464 after explosion. This is consistent with a Type IIb classification for SN 2010P, making it the most distant and most slowly evolving Type IIb radio SN detected to date.Comment: 14 pages, 8 tables and 7 figures. Accepted for publication in MNRA

    Radio Weak Gravitational Lensing with VLA and MERLIN

    Get PDF
    We carry out an exploratory weak gravitational lensing analysis on a combined VLA and MERLIN radio data set: a deep (3.3 micro-Jy beam^-1 rms noise) 1.4 GHz image of the Hubble Deep Field North. We measure the shear estimator distribution at this radio sensitivity for the first time, finding a similar distribution to that of optical shear estimators for HST ACS data in this field. We examine the residual systematics in shear estimation for the radio data, and give cosmological constraints from radio-optical shear cross-correlation functions. We emphasize the utility of cross-correlating shear estimators from radio and optical data in order to reduce the impact of systematics. Unexpectedly we find no evidence of correlation between optical and radio intrinsic ellipticities of matched objects; this result improves the properties of optical-radio lensing cross-correlations. We explore the ellipticity distribution of the radio counterparts to optical sources statistically, confirming the lack of correlation; as a result we suggest a connected statistical approach to radio shear measurements.Comment: 16 pages with 19 figures, accepted for publication in MNRAS; Minor corrections to section 6.3; 2 references adde
    corecore