research

Tests of star formation metrics in the low metallicity galaxy NGC 5253 using ALMA observations of H30α\alpha line emission

Abstract

We use Atacama Large Millimeter/submillimeter Array (ALMA) observations of H30α\alpha (231.90 GHz) emission from the low metallicity dwarf galaxy NGC 5253 to measure the star formation rate (SFR) within the galaxy and to test the reliability of SFRs derived from other commonly-used metrics. The H30α\alpha emission, which originates mainly from the central starburst, yields a photoionizing photon production rate of (1.9±\pm0.3)×\times1052^{52} s1^{-1} and an SFR of 0.087±\pm0.013 M_\odot yr1^{-1} based on conversions that account for the low metallicity of the galaxy and for stellar rotation. Among the other star formation metrics we examined, the SFR calculated from the total infrared flux was statistically equivalent to the values from the H30α\alpha data. The SFR based on previously-published versions of the Hα\alpha flux that were extinction corrected using Paα\alpha and Paβ\beta lines were lower than but also statistically similar to the H30α\alpha value. The mid-infrared (22 μ\mum) flux density and the composite star formation tracer based on Hα\alpha and mid-infrared emission give SFRs that were significantly higher because the dust emission appears unusually hot compared to typical spiral galaxies. Conversely, the 70 and 160 μ\mum flux densities yielded SFR lower than the H30α\alpha value, although the SFRs from the 70 μ\mum and H30α\alpha data were within 1-2σ\sigma of each other. While further analysis on a broader range of galaxies are needed, these results are instructive of the best and worst methods to use when measuring SFR in low metallicity dwarf galaxies like NGC 5253.Comment: 14 pages, 5 figures, accepted for publication in MNRA

    Similar works