459 research outputs found

    Transitioning out of Open Access: A Closer Look at Institutions for Management of Groundwater Rights in France, California, and Spain

    Full text link
    [EN] Many regions around the world are transitioning out of open access to groundwater resources in order to tackle over extraction by irrigated agriculture. However, the state has limited capacities to regulate effectively agricultural groundwater use. This paper evaluates how users and public authorities can co-manage groundwater extraction by agriculture. Based on Schlager and Ostrom¿s ¿bundle of rights¿ framework, the paper examines how decisions over access and use of groundwater resources are made in France, Spain and California. The three cases share a common strive to involve groundwater users in decisions over how to reduce over extraction of groundwater resources. However, different choices were made regarding the institutional set-up for user involvement in allocation decisions. The paper presents the diversity of institutional arrangements influencing groundwater allocations in the three cases, and the relative involvement and power of users and public authorities over these institutions. The papers show the different ways in which ¿comanagement¿ may be made operational for managing agricultural groundwater use.This research benefited from funding of the EU H2020 RURECO project (grant agreement 750553) and from Montpellier University I-Site MUSE. This study has also received funding from the eGROUNDWATER project (GA n. 1921), part of the PRIMA programme supported by the European Union's Horizon 2020 research and innovation programmeRouillard, J.; Babbitt, C.; Pulido-Velazquez, M.; Rinaudo, J. (2021). Transitioning out of Open Access: A Closer Look at Institutions for Management of Groundwater Rights in France, California, and Spain. Water Resources Research. 57(4):1-20. https://doi.org/10.1029/2020WR028951S12057

    Multi-Magnon Scattering in the Ferromagnetic XXX-Model with Inhomogeneities

    Full text link
    We determine the transition amplitude for multi-magnon scattering induced through an inhomogeneous distribution of the coupling constant in the ferromagnetic XXX-model. The two and three particle amplitudes are explicitely calculated at small momenta. This suggests a rather plausible conjecture also for a formula of the general n-particle amplitude.Comment: 21 pages, latex, no figure

    Diagonalization of an Integrable Discretization of the Repulsive Delta Bose Gas on the Circle

    Full text link
    We introduce an integrable lattice discretization of the quantum system of n bosonic particles on a ring interacting pairwise via repulsive delta potentials. The corresponding (finite-dimensional) spectral problem of the integrable lattice model is solved by means of the Bethe Ansatz method. The resulting eigenfunctions turn out to be given by specializations of the Hall-Littlewood polynomials. In the continuum limit the solution of the repulsive delta Bose gas due to Lieb and Liniger is recovered, including the orthogonality of the Bethe wave functions first proved by Dorlas (extending previous work of C.N. Yang and C.P. Yang).Comment: 25 pages, LaTe

    Emissions of Formaldehyde, Acetic Acid, Methanol, and Other Trace Gases from Biomass Fires in North Carolina Measured by Airborne Fourier Transform Infrared Spectroscopy

    Get PDF
    Biomass burning is an important source of many trace gases in the global troposphere. We have constructed an airborne trace gas measurement system consisting of a Fourier transform infrared spectrometer (FTIR) coupled to a “flow-through” multipass cell (AFTIR) and installed it on a U.S. Department of Agriculture Forest Service King Air B-90. The first measurements with the new system were conducted in North Carolina during April 1997 on large, isolated biomass fire plumes. Simultaneous measurements included Global Positioning System (GPS); airborne sonde; particle light scattering, CO, and CO2; and integrated filter and canister samples. AFTIR spectra acquired within a few kilometers of the fires yielded excess mixing ratios for 10 of the most common trace gases in the smoke: water, carbon dioxide, carbon monoxide, methane, formaldehyde, acetic acid, formic acid, methanol, ethylene, and ammonia. Emission ratios to carbon monoxide for formaldehyde, acetic acid, and methanol were each 2.5±1%. This is in excellent agreement with (and confirms the relevance of) our results from laboratory fires. However, these ratios are significantly higher than the emission ratios reported for these compounds in some previous studies of “fresh” smoke. We present a simple photochemical model calculation that suggests that oxygenated organic compounds should be included in the assessment of ozone formation in smoke plumes. Our measured emission factors indicate that biomass fires could account for a significant portion of the oxygenated organic compounds and HOx present in the tropical troposphere during the dry season. Our fire measurements, along with recent measurements of oxygenated biogenic emissions and oxygenated organic compounds in the free troposphere, indicate that these rarely measured compounds play a major, but poorly understood, role in the HOx, NOx, and O3 chemistry of the troposphere

    A Conditional Yeast E1 Mutant Blocks the Ubiquitin–Proteasome Pathway and Reveals a Role for Ubiquitin Conjugates in Targeting Rad23 to the Proteasome

    Get PDF
    E1 ubiquitin activating enzyme catalyzes the initial step in all ubiquitin-dependent processes. We report the isolation of uba1-204, a temperature-sensitive allele of the essential Saccharomyces cerevisiae E1 gene, UBA1. Uba1-204 cells exhibit dramatic inhibition of the ubiquitin–proteasome system, resulting in rapid depletion of cellular ubiquitin conjugates and stabilization of multiple substrates. We have employed the tight phenotype of this mutant to investigate the role ubiquitin conjugates play in the dynamic interaction of the UbL/UBA adaptor proteins Rad23 and Dsk2 with the proteasome. Although proteasomes purified from mutant cells are intact and proteolytically active, they are depleted of ubiquitin conjugates, Rad23, and Dsk2. Binding of Rad23 to these proteasomes in vitro is enhanced by addition of either free or substrate-linked ubiquitin chains. Moreover, association of Rad23 with proteasomes in mutant and wild-type cells is improved upon stabilizing ubiquitin conjugates with proteasome inhibitor. We propose that recognition of polyubiquitin chains by Rad23 promotes its shuttling to the proteasome in vivo

    Tempo and mode of gene expression evolution in the brain across primates

    Get PDF
    Primate evolution has led to a remarkable diversity of behavioral specializations and pronounced brain size variation among species (Barton, 2012; DeCasien and Higham, 2019; Powell et al., 2017). Gene expression provides a promising opportunity for studying the molecular basis of brain evolution, but it has been explored in very few primate species to date (e.g. Khaitovich et al., 2005; Khrameeva et al., 2020; Ma et al., 2022; Somel et al., 2009). To understand the landscape of gene expression evolution across the primate lineage, we generated and analyzed RNA-seq data from four brain regions in an unprecedented eighteen species. Here, we show a remarkable level of variation in gene expression among hominid species, including humans and chimpanzees, despite their relatively recent divergence time from other primates. We found that individual genes display a wide range of expression dynamics across evolutionary time reflective of the diverse selection pressures acting on genes within primate brain tissue. Using our samples that represent a 190-fold difference in primate brain size, we identified genes with variation in expression most correlated with brain size. Our study extensively broadens the phylogenetic context of what is known about the molecular evolution of the brain across primates and identifies novel candidate genes for the study of genetic regulation of brain evolution

    Evolutionarily Conserved Substrate Substructures for Automated Annotation of Enzyme Superfamilies

    Get PDF
    The evolution of enzymes affects how well a species can adapt to new environmental conditions. During enzyme evolution, certain aspects of molecular function are conserved while other aspects can vary. Aspects of function that are more difficult to change or that need to be reused in multiple contexts are often conserved, while those that vary may indicate functions that are more easily changed or that are no longer required. In analogy to the study of conservation patterns in enzyme sequences and structures, we have examined the patterns of conservation and variation in enzyme function by analyzing graph isomorphisms among enzyme substrates of a large number of enzyme superfamilies. This systematic analysis of substrate substructures establishes the conservation patterns that typify individual superfamilies. Specifically, we determined the chemical substructures that are conserved among all known substrates of a superfamily and the substructures that are reacting in these substrates and then examined the relationship between the two. Across the 42 superfamilies that were analyzed, substantial variation was found in how much of the conserved substructure is reacting, suggesting that superfamilies may not be easily grouped into discrete and separable categories. Instead, our results suggest that many superfamilies may need to be treated individually for analyses of evolution, function prediction, and guiding enzyme engineering strategies. Annotating superfamilies with these conserved and reacting substructure patterns provides information that is orthogonal to information provided by studies of conservation in superfamily sequences and structures, thereby improving the precision with which we can predict the functions of enzymes of unknown function and direct studies in enzyme engineering. Because the method is automated, it is suitable for large-scale characterization and comparison of fundamental functional capabilities of both characterized and uncharacterized enzyme superfamilies

    Enzyme Promiscuity in Enolase Superfamily. Theoretical Study of o-Succinylbenzoate Synthase Using QM/MM Methods

    Get PDF
    The promiscuous activity of the enzyme o-succinylbenzoate synthase (OSBS) from the actinobacteria Amycolatopsis is investigated by means of QM/MM methods, using both density functional theory and semiempirical Hamiltonians. This enzyme catalyzes not only the dehydration of 2-succinyl-6R-hydroxy-2,4-cyclohexadiene-1R-carboxylate but also catalyzes racemization of different acylamino acids, with N-succinyl-R-phenylglycine being the best substrate. We investigated the molecular mechanisms for both reactions exploring the potential energy surface. Then, molecular dynamics simulations were performed to obtain the free energy profiles and the averaged interaction energies of enzymatic residues with the reacting system. Our results confirm the plausibility of the reaction mechanisms proposed in the literature, with a good agreement between theoretical and experimentally derived activation free energies. Our simulations unravel the role played by the different residues in each of the two possible reactions. The presence of flexible loops in the active site and the selection of structural modifications in the substrate seem to be key elements to promote the promiscuity of this enzyme.This work was supported by the Spanish Ministerio de Economia y Competitividad project CTQ2012-36253-C03-03 ́ and FEDER funds. K.S. thanks the Polish National Science Center (NCN) for Grant 2011/02/A/ST4/00246. The authors acknowledge computational facilities of the Servei d’Informatica ̀ de la Universitat de Valencia in the ̀ “Tirant” supercomputer, which is part of the Spanish Supercomputing Network
    corecore