43 research outputs found

    The Calcineurin Antagonist, RCAN1-4 is Induced by Exhaustive Exercise in Rat Skeletal Muscle

    No full text
    International audienceThe aim of this work was to study the regulation of the calcineurin antagonist regulator of calcineurin 1 (RCAN1) in rat skeletal muscles after exhaustive physical exercise, which is a physiological modulator of oxidative stress. Three skeletal muscles, namely extensor digitorum longus (EDL), gastrocnemius, and soleus, were investigated. Exhaustive exercise increased RCAN1-4 protein levels in EDL and gastrocnemius, but not in soleus. Protein oxidation as an index of oxidative stress was increased in EDL and gastrocnemius, but remained unchanged in soleus. However, lipid peroxidation was increased in all three muscles. CuZnSOD and catalase protein levels were increased at 3 h postexercise in soleus, whereas they remained unchanged in EDL and gastrocnemius. Calcineurin enzymatic activity declined in EDL and gastrocnemius but not in soleus, and its protein expression was decreased in all three muscles. The level of PGC1-α protein remained unchanged, whereas the protein expression of the transcription factor NFATc4 was decreased in all three muscles. Adiponectin expression was increased in all three muscles. RCAN1-4 expression in EDL and gastrocnemius muscles was augmented by the oxidative stress generated from exhaustive exercise. We propose that increased RCAN1-4 expression and the signal transduction pathways it regulates represent important components of the physiological adaptation to exercise-induced oxidative stress

    The Oxygen Paradox, the French Paradox, and age-related diseases

    Get PDF
    open46openDavies, Joanna M. S.; Cillard, Josiane; Friguet, Bertrand; Cadenas, Enrique; Cadet, Jean; Cayce, Rachael; Fishmann, Andrew; Liao, David; Bulteau, Anne-Laure; Derbré, Frédéric; Rébillard, Amélie; Burstein, Steven; Hirsch, Etienne; Kloner, Robert A.; Jakowec, Michael; Petzinger, Giselle; Sauce, Delphine; Sennlaub, Florian; Limon, Isabelle; Ursini, Fulvio; Maiorino, Matilde; Economides, Christina; Pike, Christian J.; Cohen, Pinchas; Salvayre, Anne Negre; Halliday, Matthew R.; Lundquist, Adam J.; Jakowec, Nicolaus A.; Mechta-Grigoriou, Fatima; Mericskay, Mathias; Mariani, Jean; Li, Zhenlin; Huang, David; Grant, Ellsworth; Forman, Henry J.; Finch, Caleb E.; Sun, Patrick Y.; Pomatto, Laura C. D.; Agbulut, Onnik; Warburton, David; Neri, Christian; Rouis, Mustapha; Cillard, Pierre; Capeau, Jacqueline; Rosenbaum, Jean; Davies, Kelvin J. A.Davies, Joanna M. S.; Cillard, Josiane; Friguet, Bertrand; Cadenas, Enrique; Cadet, Jean; Cayce, Rachael; Fishmann, Andrew; Liao, David; Bulteau, Anne-Laure; Derbré, Frédéric; Rébillard, Amélie; Burstein, Steven; Hirsch, Etienne; Kloner, Robert A.; Jakowec, Michael; Petzinger, Giselle; Sauce, Delphine; Sennlaub, Florian; Limon, Isabelle; Ursini, Fulvio; Maiorino, Matilde; Economides, Christina; Pike, Christian J.; Cohen, Pinchas; Salvayre, Anne Negre; Halliday, Matthew R.; Lundquist, Adam J.; Jakowec, Nicolaus A.; Mechta-Grigoriou, Fatima; Mericskay, Mathias; Mariani, Jean; Li, Zhenlin; Huang, David; Grant, Ellsworth; Forman, HENRY J.; Finch, Caleb E.; Sun, Patrick Y.; Pomatto, Laura C. D.; Agbulut, Onnik; Warburton, David; Neri, Christian; Rouis, Mustapha; Cillard, Pierre; Capeau, Jacqueline; Rosenbaum, Jean; Davies, Kelvin J. A

    Retour d’expérience sur les évènements déclarés à l’Autorité de sûreté nucléaire (ASN) dans le domaine médical

    No full text
    The ASN launched in July 2007 a system of notification of significant events dealing with ionising radiation, called ESRs. The ESRs notified to the ASN in the medical field have been increasing since 2007 and amounted to a total of 2300. The information showed that the medical activities with the most important implications for radiation protection regarding professionals are interventional radiology, with dose limit overruns, brachytherapy and nuclear medicine, with internal contamination of operators. For patients, deterministic effects were observed in interventional radiology as well as large doses in nuclear medicine, when the process of issuing radiopharmaceuticals is not managed, with the worst ESR being a partial removal of the thyroid. Many events involve leaks of radioactive waste and emphasise the need to strengthen the maintenance and monitoring facilities, and can cause major disruptions of service with delays in the delivery of care. The feedback emphasises the importance of empowering medical physicists and radiation protection officers to implement steps of quality management and risk management as well as clinical audits

    Combination of iron overload plus ethanol and ischemia alone give rise to the same endogenous free iron pool.

    No full text
    Iron overload aggravates tissue damage caused by ischemia and ethanol intoxication. The underlying mechanisms of this phenomenon are not yet clear. To clarify these mechanisms we followed free iron (loosely bound redox-active iron) concentration in livers from rats subjected to experimental iron overload, acute ethanol intoxication, and ex vivo warm ischemia. The levels of free iron in non-homogenized liver tissues, liver homogenates, and hepatocyte cultures were analyzed by means of EPR spectroscopy. Ischemia gradually increased the levels of endogenous free iron in liver tissues and in liver homogenates. The increase was accompanied by the accumulation of lipid peroxidation products. Iron overload alone, known to increase significantly the total tissue iron, did not affect either free iron levels or lipid peroxidation. Homogenization of iron-loaded livers, however, resulted in the release of a significant portion of free iron from endogenous depositories. Acute ethanol intoxication increased free iron levels in liver tissue and diminished the portion of free iron releasing during homogenization. Similarly to liver tissue, the primary hepatocyte culture loaded with iron in vitro released significantly more free iron during homogenization compared to non iron-loaded hepatocyte culture. Analyzing three possible sources of free iron release under these experimental conditions in liver cells, namely ferritin, intracellular transferrin-receptor complex and heme oxygenase, we suggest that redox active free iron is released from ferritin under ischemic conditions whereas ethanol and homogenization facilitate the release of iron from endosomes containing transferrin-receptor complexes
    corecore