295 research outputs found

    Análisis tiempo-frecuencia de mapas de activación cardíaca en fibrilación ventricular

    Get PDF
    El análisis de mapas de activación permite investigar la estructura de la fibrilación ventricular cardíaca (FV). El presente trabajo plantea una revisión de la utilización de objetos de interés (blobs), usados en procesado de imágenes y aplicados también a mapas de activación cerebral y cardíaca, mediante su generación a partir de representaciones tiempo-frecuencia de registros FV. Su estudio proporciona información sobre qué frecuencias de la señal están presentes en un instante dado, así como su distribución espacial. También permiten determinar el momento en que una determinada frecuencia aparece y desaparece de cada electrodo, por lo que constituye una herramienta interesante para analizar los mecanismos de generación y mantenimiento de la FV

    Heart rate response and functional capacity in patients with chronic heart failure with preserved ejection fraction

    Get PDF
    Aims: The mechanisms of exercise intolerance in heart failure with preserved ejection fraction (HFpEF) are not yet elucidated. Chronotropic incompetence has emerged as a potential mechanism. We aimed to evaluate whether heart rate (HR) response to exercise is associated to functional capacity in patients with symptomatic HFpEF. Methods and results We prospectively studied 74 HFpEF patients [35.1% New York Heart Association Class III, 53% fe- male, age (mean ± standard deviation) 72.5 ± 9.1 years, and 59.5% atrial fi brillation]. Functional performance was assessed by peak oxygen consumption (peak VO 2 ). The mean (standard deviation) peak VO 2 was 10 ± 2.8 mL/min/kg. The following chronotropic parameters were calculated: Delta-HR (HR at peak exercise - HR at rest), chronotropic index (CI) = (HR at peak exercise - resting HR)/[(220 - age) - resting HR], and CI according to the equation developed by Keteyian et al . (CIK) (HR at peak exercise - HR at rest)/[119 + (HR at rest/2) (age/2) - 5 - HR at rest]. In a bivariate setting, peak VO 2 was positively and signi fi cantly correlated with Delta-HR ( r = 0.35, P = 0.003), CI ( r = 0.27, P = 0.022), CIK ( r = 0.28, P = 0.018), and borderline with HR at peak exercise ( r = 0.22, P = 0.055). In a multivariable linear regression analysis that included clinical, analytical, echocardiographic, and functional capacity covariates, the chronotropic parameters were positively associated with peak VO 2 . We found a linear relationship between Delta-HR and peak VO 2 ( β coef fi cient of 0.03; 95% con fi dence interval: 0.004 – 0.05; P = 0.030); conversely, the association among CIs and peak VO 2 was exponen- tially shaped. Conclusions In patients with chronic HFpEF, the HR response to exercise was positively associated to patient ’ s functional capacity

    1D-confinement of polyiodides inside single-wall carbon nanotubes

    Get PDF
    International audience1D-confinement of polyiodides inside single-wall carbon nanotubes (SWCNT) is investigated. Structural arrangement of iodine species as a function of the SWCNT diameters is studied. Evidence for long range one dimensional ordering of the iodine species is shown by X-ray and electron diffraction experiments independently of the tube diameter. The structure of the confined polyiodides is investigated by X-ray absorption spectroscopy. The confinement influences the local arrangement of the chains. Below a critical diameter Fc of 1 nm, long linear polyiodides are evidenced leading to a weaker charge transfer than for nanotube diameter above Fc. A shortening of the polyiodides is exhibited with the increase of the nanotube diameter leading to a more efficient charge transfer. This point reflects the 1D-confinement of the polyiodides inside the nanotubes

    Development and Long-Term Follow-Up of an Experimental Model of Myocardial Infarction in Rabbits

    Get PDF
    [EN] A chronic model of acute myocardial infarction was developed to study the mechanisms involved in adverse postinfarction ventricular remodeling. In an acute myocardial infarction (AMI), the left circumflex coronary artery of New Zealand White rabbits (n = 9) was occluded by ligature for 1 h, followed by reperfusion. A specific care protocol was applied before, during, and after the intervention, and the results were compared with those of a sham operated group (n = 7). After 5 weeks, programmed stimulation and high-resolution mapping were performed on isolated and perfused hearts using the Langendorff technique. The infarct size determined by 2,3,5-triphenyltetrazolium chloride inside of the area at risk (thioflavin-S) was then determined. The area at risk was similar in both groups (54.33% (experimental infarct group) vs. 58.59% (sham group), ns). The infarct size was 73.16% as a percentage of the risk area. The experimental infarct group had a higher inducibility of ventricular arrhythmias (100% vs. 43% in the sham group, p = 0.009). A reproducible chronic experimental model of myocardial infarction is presented in which the extent and characteristics of the lesions enable the study of the vulnerability to develop ventricular arrhythmias because of the remodeling process that occurs during cardiac tissue repair.This research was funded by Generalitat Valenciana (PROMETEO/2018/078), Instituto de Salud Carlos III (CB16/11/00486; PI15/01408; PIE15/0001 3and PI18/01620) to F.J.C.Genovés, P.; Arias-Mutis, ÓJ.; Parra, G.; Such-Miquel, L.; Zarzoso, M.; Del Canto, I.; Soler, C.... (2020). Development and Long-Term Follow-Up of an Experimental Model of Myocardial Infarction in Rabbits. Animals. 10(9). https://doi.org/10.3390/ani1009157610

    Perpendicular magnetic anisotropy in granular multilayers of COPD alloyed nanoparticles

    Get PDF
    Co-Pd multilayers obtained by Pd capping of pre-deposited Co nanoparticles on amorphous alumina are systematically studied by means of high-resolution transmission electron microscopy, x-ray diffraction, extended x-ray absorption fine structure, SQUID-based magnetometry, and x-ray magnetic circular dichroism. The films are formed by COPD alloyed nanoparticles self-organized across the layers, with the interspace between the nanoparticles filled by the non-alloyed Pd metal. The nanoparticles show atomic arrangements compatible with short-range chemical order of L10 strucure type. The collective magnetic behavior is that of ferromagnetically coupled particles with perpendicular magnetic anisotropy, irrespective of the amount of deposited Pd. For increasing temperature three magnetic phases are identified: hard ferromagnetic with strong coercive field, soft-ferromagnetic as in an amorphous asperomagnet, and superparamagnetic. Increasing the amount of Pd in the system leads to both magnetic hardness increment and higher transition temperatures. Magnetic total moments of 1.77(4) µB and 0.45(4) µB are found at Co and Pd sites, respectively, where the orbital moment of Co, 0.40(2) µB, is high, while that of Pd is negligible. The effective magnetic anisotropy is the largest in the capping metal series (Pd, Pt, W, Cu, Ag, Au), which is attributed to the interparticle interaction between de nanoparticles, in addition to the intraparticle anisotropy arising from hybridization between the 3d-4d bands associated to the Co and Pd chemical arrangement in a L10 structure type

    Rehospitalization burden and morbidity risk in patients with heart failure with mid-range ejection fraction

    Get PDF
    Heart failure with mid-range ejection fraction (HFmrEF) has been proposed as a distinct HF phenotype, but whether patients on this category fare worse, similarly, or better than those with HF with reduced EF (HFrEF) or preserved EF (HFpEF) in terms of rehospitalization risks over time remains unclear. We prospectively included 2961 consecutive patients admitted for acute HF (AHF) in our institution. Of them, 158 patients died during the index admission, leaving the sample size to be 2803 patients. Patients were categorized according to their EF: HFrEF if EF ≤ 40% (n = 908, 32.4%); HFmrEF if EF = 41-49% (n = 449, 16.0%); and HFpEF if EF ≥ 50% (n = 1446, 51.6%). Covariate-adjusted incidence rate ratios (IRRs) were used to evaluate the association between EF status and recurrent all-cause and HF-related admissions. At a median follow-up of 2.6 years (inter-quartile range: 1.0-5.3), 1663 (59.3%) patients died, and 6035 all-cause readmissions were registered in 2026 patients (72.3%), 2163 of them HF related. Rates of all-cause readmission per 100 patients-years of follow-up were 150.1, 176.9, and 163.6 in HFrEF, HFmrEF, and HFpEF, respectively (P = 0.097). After multivariable adjustment, when compared with that of patients with HFrEF and HFpEF, HFmrEF status was not significantly associated with a different risk of all-cause readmissions (IRR = 0.99; 95% confidence interval [CI], 0.77-1.27; P = 0.926; and IRR = 0.93; 95% CI, 0.74-1.18; P = 0.621, respectively) or HF-related readmissions (IRR = 1.06; 95% CI, 0.77-1.46; P = 0.725; and IRR = 1.11; 95% CI, 0.82-1.50; P = 0.511, respectively). Following an admission for AHF, patients with HFmrEF had a similar rehospitalization burden and a similar risk of recurrent all-cause and HF-related admissions than had patients with HFrEF or HFpEF. Regarding morbidity risk, HFmrEF seems not to be a distinct HF phenotype

    Right Ventricular Dysfunction Staging System for Mortality Risk Stratifiction in Heart Failure with Preserved Ejection Fraction

    Get PDF
    Right ventricular dysfunction (RVD) parameters are increasingly important features in heart failure with preserved ejection fraction (HFpEF). We sought to evaluate the prognostic impact of a progressive RVD staging system by combining the tricuspid annular plane systolic excursion (TAPSE) to pulmonary artery systolic pressure (TAPSE/PASP) ratio with functional tricuspid regurgitation (TR) severity. We prospectively included 1355 consecutive HFpEF patients discharged for acute heart failure (HF). Of them, in 471 (34.7%) patients, PASP could not be accurately measured, leaving the final sample size to be 884 patients. Patients were categorized as Stage 1: TAPSE/PASP ≥ 0.36 without significant TR; stage 2: TAPSE/PASP ≥ 0.36 with significant TR; stage 3: TAPSE/PASP < 0.36 without significant TR; and stage 4: TAPSE/PASP < 0.36 with significant TR. By the 1 year follow-up, 207 (23.4%) patients had died. We found a significant and graded association between RVD stages and mortality rates (15.8%, 25%, 31.2%, and 45.4% from stage 1 to stage 4, respectively; log-rank test, p < 0.001). After multivariable adjustment, and compared to stage 1, stages 3 and 4 were independently associated with mortality risk (HR: 1.8219; 95% CI 1.308-2.538; p < 0.001 and HR = 2.2632; 95% CI 1.540-3.325; p < 0.001, respectively). A RVD staging system, integrating TAPSE/PASP and TR, provides a comprehensive and widely available tool for risk stratification in HFpEF

    Role of PCSK9 in the course of ejection fraction change after ST-segment elevation myocardial infarction : a pilot study

    Get PDF
    Altres ajuts: Conselleria d'Educació, Investigació, Cultura i Esport GV/2018/116Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a therapeutic target for reducing plasma low-density lipoprotein cholesterol. Beyond lipid control, recent findings suggest a deleterious effect of this protein in the pathogenesis of postmyocardial infarction left ventricle remodelling and heart failure-related complications. The aim of this study was to assess the relationship between circulating PCSK9 and 6 month cardiac magnetic resonance imaging-derived left ventricular ejection fraction (LVEF) after a first ST-segment elevation myocardial infarction (STEMI). We prospectively evaluated 40 patients with a first STEMI, LVEF < 50% and treated with primary percutaneous coronary intervention in which PCSK9 was measured 24 h postreperfusion. All patients underwent cardiac magnetic resonance imaging 1 week and 6 months after STEMI. Baseline characteristics were compared across median values of PCSK9. The association between PCSK9 levels and LVEF at 6 months was evaluated by analysis of covariance. The mean age of the sample was 60 ± 12 years and 33 (82.5%) were male patients. The infarct location was anterior in 27 patients (67.5%), and 9 patients (22.5%) were Killip class ≥ II. The mean 1 week and 6 month LVEF were 41 ± 7% and 48 ± 10%, respectively. The mean PCSK9 was 1.93 ± 0.38 U/mL. Testing the association between serum PCSK9 and 6 month LVEF with analysis of covariance revealed an inverse relationship (r = −0.35, P = 0.028). After multivariate adjustment, circulating PCSK9 remained significant and inversely associated with 6 month LVEF (P = 0.002). In patients with a first STEMI with reduced ejection fraction at index admission and treated with primary percutaneous coronary intervention, circulating PCSK9 was associated with lower LVEF at 6 months

    A Novel Clinical and Stress Cardiac Magnetic Resonance (C-CMR-10) Score to Predict Long-Term All-Cause Mortality in Patients with Known or Suspected Chronic Coronary Syndrome

    Full text link
    [EN] Vasodilator stress cardiac magnetic resonance (stressCMR) has shown robust diagnostic and prognostic value in patients with known or suspected chronic coronary syndrome (CCS). However, it is unknown whether integration of stressCMR with clinical variables in a simple clinical-imaging score can straightforwardly predict all-cause mortality in this population. We included 6187 patients in a large registry that underwent stressCMR for known or suspected CCS. Several clinical and stressCMR variables were collected, such as left ventricular ejection fraction (LVEF) and ischemic burden (number of segments with stress-induced perfusion defects (PD)). During a median follow-up of 5.56 years, we registered 682 (11%) all-cause deaths. The only independent predictors of all-cause mortality in multivariable analysis were age, male sex, diabetes mellitus (DM), LVEF and ischemic burden. Based on the weight of the chi-square increase at each step of the multivariable analysis, we created a simple clinical-stressCMR (C-CMR-10) score that included these variables (age >= 65 years = 3 points, LVEF 5 segments = 1 point). This 0 to 10 points C-CMR-10 score showed good performance to predict all-cause annualized mortality rate ranging from 0.29%/year (score = 0) to >4.6%/year (score >= 7). The goodness of the model and of the C-CMR-10 score was separately confirmed in 2 internal cohorts (n> 3000 each). We conclude that a novel and simple clinical-stressCMR score, which includes clinical and stressCMR variables, can provide robust prediction of the risk of long-term all-cause mortality in a population of patients with known or suspected CCS.This work was supported by the Instituto de Salud Carlos III and co-funded by Fondo Europeo de Desarrollo Regional (FEDER) (grant numbers PI17/01836 and CIBERCV16/11/00486).Marcos-Garces, V.; Gavara-Doñate, J.; Monmeneu-Menadas, JV.; Lopez-Lereu, MP.; Pérez, N.; Rios-Navarro, C.; De Dios, E.... (2020). A Novel Clinical and Stress Cardiac Magnetic Resonance (C-CMR-10) Score to Predict Long-Term All-Cause Mortality in Patients with Known or Suspected Chronic Coronary Syndrome. Journal of Clinical Medicine. 9(6):1-13. https://doi.org/10.3390/jcm9061957S11396Hendel, R. C., Friedrich, M. G., Schulz-Menger, J., Zemmrich, C., Bengel, F., Berman, D. S., … Nagel, E. (2016). CMR First-Pass Perfusion for Suspected Inducible Myocardial Ischemia. JACC: Cardiovascular Imaging, 9(11), 1338-1348. doi:10.1016/j.jcmg.2016.09.010Chang, S.-A., & Kim, R. J. (2016). The Use of Cardiac Magnetic Resonance in Patients with Suspected Coronary Artery Disease: A Clinical Practice Perspective. Journal of Cardiovascular Ultrasound, 24(2), 96. doi:10.4250/jcu.2016.24.2.96Kiaos, A., Tziatzios, I., Hadjimiltiades, S., Karvounis, C., & Karamitsos, T. D. (2018). Diagnostic performance of stress perfusion cardiac magnetic resonance for the detection of coronary artery disease. International Journal of Cardiology, 252, 229-233. doi:10.1016/j.ijcard.2017.11.066Li, M., Zhou, T., Yang, L., Peng, Z., Ding, J., & Sun, G. (2014). Diagnostic Accuracy of Myocardial Magnetic Resonance Perfusion to Diagnose Ischemic Stenosis With Fractional Flow Reserve as Reference. JACC: Cardiovascular Imaging, 7(11), 1098-1105. doi:10.1016/j.jcmg.2014.07.011Siontis, G. C., Mavridis, D., Greenwood, J. P., Coles, B., Nikolakopoulou, A., Jüni, P., … Windecker, S. (2018). Outcomes of non-invasive diagnostic modalities for the detection of coronary artery disease: network meta-analysis of diagnostic randomised controlled trials. BMJ, k504. doi:10.1136/bmj.k504Nagel, E., Greenwood, J. P., McCann, G. P., Bettencourt, N., Shah, A. M., Hussain, S. T., … Berry, C. (2019). Magnetic Resonance Perfusion or Fractional Flow Reserve in Coronary Disease. New England Journal of Medicine, 380(25), 2418-2428. doi:10.1056/nejmoa1716734Siontis, G. C., Branca, M., Serruys, P., Silber, S., Räber, L., Pilgrim, T., … Hunziker, L. (2019). Impact of left ventricular function on clinical outcomes among patients with coronary artery disease. European Journal of Preventive Cardiology, 26(12), 1273-1284. doi:10.1177/2047487319841939Buckert, D., Kelle, S., Buss, S., Korosoglou, G., Gebker, R., Birkemeyer, R., … Bernhardt, P. (2016). Left ventricular ejection fraction and presence of myocardial necrosis assessed by cardiac magnetic resonance imaging correctly risk stratify patients with stable coronary artery disease: a multi-center all-comers trial. Clinical Research in Cardiology, 106(3), 219-229. doi:10.1007/s00392-016-1042-5Catalano, O., Moro, G., Perotti, M., Frascaroli, M., Ceresa, M., Antonaci, S., … Priori, S. G. (2012). Late gadolinium enhancement by cardiovascular magnetic resonance is complementary to left ventricle ejection fraction in predicting prognosis of patients with stable coronary artery disease. Journal of Cardiovascular Magnetic Resonance, 14(1). doi:10.1186/1532-429x-14-29Lipinski, M. J., McVey, C. M., Berger, J. S., Kramer, C. M., & Salerno, M. (2013). Prognostic Value of Stress Cardiac Magnetic Resonance Imaging in Patients With Known or Suspected Coronary Artery Disease. Journal of the American College of Cardiology, 62(9), 826-838. doi:10.1016/j.jacc.2013.03.080Gargiulo, P., Dellegrottaglie, S., Bruzzese, D., Savarese, G., Scala, O., Ruggiero, D., … Filardi, P. P. (2013). The Prognostic Value of Normal Stress Cardiac Magnetic Resonance in Patients With Known or Suspected Coronary Artery Disease. Circulation: Cardiovascular Imaging, 6(4), 574-582. doi:10.1161/circimaging.113.000035Kwong, R. Y., Ge, Y., Steel, K., Bingham, S., Abdullah, S., Fujikura, K., … Simonetti, O. P. (2019). Cardiac Magnetic Resonance Stress Perfusion Imaging for Evaluation of Patients With Chest Pain. Journal of the American College of Cardiology, 74(14), 1741-1755. doi:10.1016/j.jacc.2019.07.074Marcos-Garces, V., Gavara, J., Monmeneu, J. V., Lopez-Lereu, M. P., Bosch, M. J., Merlos, P., … Bodi, V. (2020). Vasodilator Stress CMR and All-Cause Mortality in Stable Ischemic Heart Disease. JACC: Cardiovascular Imaging, 13(8), 1674-1686. doi:10.1016/j.jcmg.2020.02.027Heitner, J. F., Kim, R. J., Kim, H. W., Klem, I., Shah, D. J., Debs, D., … Judd, R. M. (2019). Prognostic Value of Vasodilator Stress Cardiac Magnetic Resonance Imaging. JAMA Cardiology, 4(3), 256. doi:10.1001/jamacardio.2019.0035Bodi, V., Sanchis, J., Lopez-Lereu, M. P., Nunez, J., Mainar, L., Monmeneu, J. V., … Llacer, A. (2007). Prognostic Value of Dipyridamole Stress Cardiovascular Magnetic Resonance Imaging in Patients With Known or Suspected Coronary Artery Disease. Journal of the American College of Cardiology, 50(12), 1174-1179. doi:10.1016/j.jacc.2007.06.016Bodi, V., Husser, O., Sanchis, J., Núñez, J., Monmeneu, J. V., López-Lereu, M. P., … Llacer, Á. (2012). Prognostic Implications of Dipyridamole Cardiac MR Imaging: A Prospective Multicenter Registry. Radiology, 262(1), 91-100. doi:10.1148/radiol.11110134Ponikowski, P., Voors, A. A., Anker, S. D., Bueno, H., Cleland, J. G. F., Coats, A. J. S., … van der Meer, P. (2016). 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. European Heart Journal, 37(27), 2129-2200. doi:10.1093/eurheartj/ehw128Marschner, I. C., Colquhoun, D., Simes, R. J., Glasziou, P., Harris, P., Singh, B. B., … Tonkin, A. (2001). Long-term risk stratification for survivors of acute coronary syndromes. Journal of the American College of Cardiology, 38(1), 56-63. doi:10.1016/s0735-1097(01)01360-2Knuuti, J., Wijns, W., Saraste, A., Capodanno, D., Barbato, E., Funck-Brentano, C., … Cuisset, T. (2019). 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. European Heart Journal, 41(3), 407-477. doi:10.1093/eurheartj/ehz425Klem, I., Shah, D. J., White, R. D., Pennell, D. J., van Rossum, A. C., Regenfus, M., … Kim, R. J. (2011). Prognostic Value of Routine Cardiac Magnetic Resonance Assessment of Left Ventricular Ejection Fraction and Myocardial Damage. Circulation: Cardiovascular Imaging, 4(6), 610-619. doi:10.1161/circimaging.111.964965Grothues, F., Smith, G. C., Moon, J. C. ., Bellenger, N. G., Collins, P., Klein, H. U., & Pennell, D. J. (2002). Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. The American Journal of Cardiology, 90(1), 29-34. doi:10.1016/s0002-9149(02)02381-0Timmis, A., Raharja, A., Archbold, R. A., & Mathur, A. (2018). Validity of inducible ischaemia as a surrogate for adverse outcomes in stable coronary artery disease. Heart, 104(21), 1733-1738. doi:10.1136/heartjnl-2018-313230Pontone, G., Andreini, D., Bertella, E., Loguercio, M., Guglielmo, M., Baggiano, A., … Masci, P. G. (2015). Prognostic value of dipyridamole stress cardiac magnetic resonance in patients with known or suspected coronary artery disease: a mid-term follow-up study. European Radiology, 26(7), 2155-2165. doi:10.1007/s00330-015-4064-xHeydari, B., Juan, Y.-H., Liu, H., Abbasi, S., Shah, R., Blankstein, R., … Kwong, R. Y. (2016). Stress Perfusion Cardiac Magnetic Resonance Imaging Effectively Risk Stratifies Diabetic Patients With Suspected Myocardial Ischemia. Circulation: Cardiovascular Imaging, 9(4). doi:10.1161/circimaging.115.004136Vincenti, G., Masci, P. G., Monney, P., Rutz, T., Hugelshofer, S., Gaxherri, M., … Schwitter, J. (2017). Stress Perfusion CMR in Patients With Known and Suspected CAD. JACC: Cardiovascular Imaging, 10(5), 526-537. doi:10.1016/j.jcmg.2017.02.006Buckert, D., Cieslik, M., Tibi, R., Radermacher, M., Rottbauer, W., & Bernhardt, P. (2017). Cardiac magnetic resonance imaging derived quantification of myocardial ischemia and scar improves risk stratification and patient management in stable coronary artery disease. Cardiology Journal, 24(3), 293-304. doi:10.5603/cj.a2017.0036Zemrak, F., & Petersen, S. E. (2011). Late Gadolinium Enhancement CMR Predicts Adverse Cardiovascular Outcomes and Mortality in Patients With Coronary Artery Disease: Systematic Review and Meta-Analysis. Progress in Cardiovascular Diseases, 54(3), 215-229. doi:10.1016/j.pcad.2011.07.003El Aidi, H., Adams, A., Moons, K. G. M., Den Ruijter, H. M., Mali, W. P. T. M., Doevendans, P. A., … Leiner, T. (2014). Cardiac Magnetic Resonance Imaging Findings and the Risk of Cardiovascular Events in Patients With Recent Myocardial Infarction or Suspected or Known Coronary Artery Disease. Journal of the American College of Cardiology, 63(11), 1031-1045. doi:10.1016/j.jacc.2013.11.048Fox, K. A. A., Metra, M., Morais, J., & Atar, D. (2019). The myth of ‘stable’ coronary artery disease. Nature Reviews Cardiology, 17(1), 9-21. doi:10.1038/s41569-019-0233-ySchiele, F., Ecarnot, F., & Chopard, R. (2017). Coronary artery disease: Risk stratification and patient selection for more aggressive secondary prevention. European Journal of Preventive Cardiology, 24(3_suppl), 88-100. doi:10.1177/2047487317706586Fordyce, C. B., Douglas, P. S., Roberts, R. S., Hoffmann, U., Al-Khalidi, H. R., … Patel, M. R. (2017). Identification of Patients With Stable Chest Pain Deriving Minimal Value From Noninvasive Testing. JAMA Cardiology, 2(4), 400. doi:10.1001/jamacardio.2016.5501Papireddy, M. R., Lavie, C. J., Deoker, A., Mamudu, H., & Paul, T. K. (2018). New Algorithm for the Prediction of Cardiovascular Risk in Symptomatic Adults with Stable Chest Pain. Current Cardiology Reports, 20(5). doi:10.1007/s11886-018-0973-

    Sex-Related Differences in Mortality Following Admission for Acute Heart Failure Across the Left Ventricular Ejection Fraction Spectrum

    Get PDF
    Following a heart failure (HF)-decompensation, there is scarce data about sex-related prognostic differences across left ventricular ejection fraction (LVEF) status. We sought to evaluate sex-related differences in 6-month mortality risk across LVEF following admission for acute HF. We retrospectively evaluated 4812 patients consecutively admitted for acute HF in a multicenter registry from 3 hospitals. Study end points were all-cause, cardiovascular, and HF-related mortality at 6-month follow-up. Multivariable Cox regression models were fitted to investigate sex-related differences across LVEF. A total of 2243 (46.6%) patients were women, 2569 (53.4%) were men, and 2608 (54.2%) showed LVEF≥50%. At 6-month follow-up, 645 patients died (13.4%), being 544 (11.3%) and 416 (8.6%) cardiovascular and HF-related deaths, respectively. LVEF was not independently associated with mortality (HR, 1.02; 95% CI 0.99-1.05; P =0.135). After multivariable adjustment, we found no sex-related differences in all-cause mortality (P value for interaction=0.168). However, a significant interaction between sex and cardiovascular and HF mortality risks was found across LVEF (P value for interaction=0.030 and 0.007, respectively). Compared with men, women had a significantly lower risk of cardiovascular and HF-mortality at LVEF80%). Following an admission for acute HF, no sex-related differences were found in all-cause mortality risk. However, when compared with men, women showed a lower risk of cardiovascular and HF-mortality at the lower extreme of LVEF. On the contrary, they showed a higher risk of HF death at the upper extreme
    corecore