16 research outputs found

    Testing the role of expansion in the prospective control of locomotion

    No full text
    International audienceThe constant bearing angle (CBA) strategy is a prospective strategy that permits the interception of moving objects. The purpose of the present study is to test this strategy. Participants were asked to walk through a virtual environment and to change, if necessary, their walking speed so as to intercept approaching targets. The targets followed either a rectilinear or a curvilinear trajectory and target size was manipulated both within trials (target size was gradually changed during the trial in order to bias expansion) and between trials (targets of different sizes were used). The curvature manipulation had a large effect on the kinematics of walking, which is in agreement with the CBA strategy. The target size manipulations also affected the kinematics of walking. Although these effects of target size are not predicted by the CBA strategy, quantitative comparisons of observed kinematics and the kinematics predicted by the CBA strategy showed good fits. Furthermore, predictions based on the CBA strategy were deemed superior to predictions based on a required velocity (V (REQ)) model. The role of target size and expansion in the prospective control of walking is discussed

    Prospective Control in Catching:The Persistent Angle-of-Approach Effect in Lateral Interception

    Get PDF
    <p>In lateral interception tasks balls converging onto the same interception location via different trajectories give rise to systematic differences in the kinematics of hand movement. While it is generally accepted that this angle-of-approach effect reflects the prospective (on-line) control of movement, controversy exists with respect to the information used to guide the hand to the future interception location. Based on the pattern of errors observed in a task requiring visual extrapolation of line segments to their intersection with a second line, angle-of-approach effects in lateral interception have been argued to result from perceptual biases in the detection of information about the ball's future passing distance along the axis of hand movement. Here we demonstrate that this account does not hold under experimental scrutiny: The angle-of-approach effect still emerged when participants intercepted balls moving along trajectories characterized by a zero perceptual bias with respect to the ball's future arrival position (Experiment 4). Designing and validating such bias-controlled trajectories were done using the line-intersection extrapolation task (Experiments 2 and 3). The experimental set-up used in the present series of experiments was first validated for the lateral interception and the line-intersection extrapolation tasks: In Experiment 1 we used rectilinear ball trajectories to replicate the angle-of-approach effect in lateral interception of virtual balls. Using line segments extracted from these rectilinear ball trajectories, in Experiment 2 we replicated the reported pattern of errors in the estimated locus of intersection with the axis of hand movement. We used these errors to develop a set of bias-free trajectories. Experiment 3 confirmed that the perceptual biases had been corrected for successfully. We discuss the implications on the information-based regulation of hand movement of our finding that the angle-of-approach effect in lateral interception cannot not explained by perceptual biases in information about the ball's future passing distance.</p>

    Using visual direction in three-dimensional motion perception

    No full text
    The eyes receive slightly different views of the world, and the differences between their images (binocular disparity) are used to see depth. Several authors have suggested how the brain could exploit this information for three-dimensional (3D) motion perception, but here we consider a simpler strategy. Visual direction is the angle between the direction of an object and the direction that an observer faces. Here we describe human behavioral experiments in which observers use visual direction, rather than binocular information, to estimate an object's 3D motion even though this causes them to make systematic errors. This suggests that recent models of binocular 3D motion perception may not reflect the strategies that human observers actually use.</p
    corecore