484 research outputs found

    Patterns of Beta Diversity of Vascular Plants and Their Correspondence With Biome Boundaries Across North America

    Get PDF
    Understanding why species composition and diversity varies spatially and with environmental variation is a long-standing theme in macroecological research. Numerous hypotheses have been generated to explain species and phylogenetic diversity gradients. Much less attention has been invested in explaining patterns of beta diversity. Biomes boundaries are thought to represent major shifts in abiotic variables accompanied by vegetation patterns and composition as a consequence of long-term interactions between the environment and the diversification and sorting of species. Using North American plant distribution data, phylogenetic information and three functional traits (SLA, seed mass, and plant height), we explicitly tested whether beta diversity is associated with biome boundaries and the extent to which two components of beta diversity—turnover and nestedness—for three dimensions of biodiversity (taxonomic, phylogenetic, and functional)—are associated with contrasting environments and linked to different patterns of historical climatic stability. We found that dimensions of vascular plant beta diversity are strongly coupled and vary considerably across North America, with turnover more influential in biomes with higher species richness and greater environmental stability and nestedness more influential in species-poor biomes characterized by high environmental variability. These results can be interpreted to indicate that in harsher climates with less stability explain beta diversity, while in warmer, wetter more stable climates, patterns of endemism associated with speciation processes, as well as local environmental sorting processes, contribute to beta diversity. Similar to prior studies, we conclude that patterns of similarity among communities and biomes reflects biogeographic legacies of how vascular plant diversity arose and was shaped by historical and ecological processes

    Seedling survival declines with increasing conspecific density in a common temperate tree

    Get PDF
    Feedbacks between plants and their soil microbial communities often drive negative density dependence in rare, tropical tree species, but their importance to common, temperate trees remains unclear. Additionally, whether negative density dependence is driven by natural enemies (e.g., soil pathogens) or by high densities of seedlings has rarely been assessed. Density dependence may also depend on seedling size, as smaller and/or younger seedlings may be more susceptible to mortality agents. We monitored seedlings of Quercus rubra, a common, canopy‐dominant temperate tree, to investigate how the density of neighboring adults and seedlings influenced their survival over two years. We assessed how the soil microbial community influenced seedling survival by growing seedlings in a glasshouse inoculated with soil collected from beneath conspecific and heterospecific mature trees. In the field, seedling survival was lower in areas with high densities of mature conspecifics but was unrelated to either conspecific or heterospecific seedling density. Smaller seedlings were also more sensitive than larger seedlings to neighboring adult conspecifics. In the glasshouse, seedlings grown with soil from beneath a conspecific adult had a higher mortality rate than seedlings grown with soil from beneath heterospecific adults or sterilized soil, suggesting that soil microbial communities drive the patterns of mortality in the field. These results illustrate the importance of negative density‐dependent feedbacks resulting from the soil microbial community in a common and ecologically important temperate tree species

    Coupling spectral and resource-use complementarity in experimental grassland and forest communites

    Get PDF
    Reflectance spectra provide integrative measures of plant phenotypes by capturing chemical, morphological, anatomical and architectural trait information. Here, we investigate the linkages between plant spectral variation, and spectral and resource-use complementarity that contribute to ecosystem productivity. In both a forest and prairie grassland diversity experiment, we delineated n-dimensional hypervolumes using wavelength bands of reflectance spectra to test the association between the spectral space occupied by individual plants and their growth, as well as between the spectral space occupied by plant communities and ecosystem productivity. We show that the spectral space occupied by individuals increased with their growth, and the spectral space occupied by plant communities increased with ecosystem productivity. Furthermore, ecosystem productivity was better explained by inter-individual spectral complementarity than by the large spectral space occupied by productive individuals. Our results indicate that spectral hypervolumes of plants can reflect ecological strategies that shape community composition and ecosystem function, and that spectral complementarity can reveal resource-use complementarity

    Deciduous and evergreen oaks show contrasting adaptive responses in leaf mass per area across environments

    Get PDF
    Increases in leaf mass per area (LMA) are commonly observed in response to environmental stresses and are achieved through increases in leaf thickness and/or leaf density. Here, we investigated how the two underlying components of LMA differ in relation to species native climates and phylogeny, across deciduous and evergreen species. Using a phylogenetic approach, we quantified anatomical, compositional and climatic variables from 40 deciduous and 45 evergreen Quercus species from across the Northern Hemisphere growing in a common garden. Deciduous species from shorter growing seasons tended to have leaves with lower LMA and leaf thickness than those from longer growing seasons, while the opposite pattern was found for evergreens. For both habits, LMA and thickness increased in arid environments. However, this shift was associated with increased leaf density in evergreens but reduced density in deciduous species. Deciduous and evergreen oaks showed fundamental leaf morphological differences that revealed a diverse adaptive response. While LMA in deciduous species may have diversified in tight coordination with thickness mainly modulated by aridity, diversification of LMA within evergreens appears to be dependent on the infrageneric group, with diversification in leaf thickness modulated by both aridity and cold, while diversification in leaf density is only modulated by aridity

    Horticultural Availability and Homeowner Preferences Drive Plant Diversity and Composition in Urban Yards

    Get PDF
    Understanding the factors that influence biodiversity in urban areas is important for informing management efforts aimed at enhancing the ecosystem services in urban settings and curbing the spread of invasive introduced species. We determined the ecological and socioeconomic factors that influence patterns of plant richness, phylogenetic diversity, and composition in 133 private household yards in the Minneapolis‐Saint Paul Metropolitan area, Minnesota, USA. We compared the composition of spontaneously occurring plant species and those planted by homeowners with composition in natural areas (at the Cedar Creek Ecosystem Science Reserve) and in the horticulture pool of species available from commercial growers. Yard area and fertilizer frequency influenced species richness of the spontaneous species but expressed homeowner values did not. In contrast, the criteria that homeowners articulated as important in their management decisions, including aesthetics, wildlife, neatness and food provision, significantly predicted cultivated species richness. Strikingly, the composition of plant species that people cultivated in their yards resembled the taxonomic and phylogenetic composition of species available commercially. In contrast, the taxonomic and phylogenetic composition of spontaneous species showed high similarity to natural areas. The large fraction of introduced species that homeowners planted was a likely consequence of what was available for them to purchase. The study links the composition and diversity of yard flora to their natural and anthropogenic sources and sheds light on the human factors and values that influence the plant diversity in residential areas of a major urban system. Enhanced understanding of the influences of the sources of plants, both native and introduced, that enter urban systems and the human factors and values that influence their diversity is critical to identifying the levers to manage urban biodiversity and ecosystem services

    Using Phylogenetic, Functional and Trait Diversity to Understand Patterns of Plant Community Productivity

    Get PDF
    BACKGROUND:Two decades of research showing that increasing plant diversity results in greater community productivity has been predicated on greater functional diversity allowing access to more of the total available resources. Thus, understanding phenotypic attributes that allow species to partition resources is fundamentally important to explaining diversity-productivity relationships. METHODOLOGY/PRINCIPAL FINDINGS:Here we use data from a long-term experiment (Cedar Creek, MN) and compare the extent to which productivity is explained by seven types of community metrics of functional variation: 1) species richness, 2) variation in 10 individual traits, 3) functional group richness, 4) a distance-based measure of functional diversity, 5) a hierarchical multivariate clustering method, 6) a nonmetric multidimensional scaling approach, and 7) a phylogenetic diversity measure, summing phylogenetic branch lengths connecting community members together and may be a surrogate for ecological differences. Although most of these diversity measures provided significant explanations of variation in productivity, the presence of a nitrogen fixer and phylogenetic diversity were the two best explanatory variables. Further, a statistical model that included the presence of a nitrogen fixer, seed weight and phylogenetic diversity was a better explanation of community productivity than other models. CONCLUSIONS:Evolutionary relationships among species appear to explain patterns of grassland productivity. Further, these results reveal that functional differences among species involve a complex suite of traits and that perhaps phylogenetic relationships provide a better measure of the diversity among species that contributes to productivity than individual or small groups of traits

    Phylogenetic Patterns of Colonization and Extinction in Experimentally Assembled Plant Communities

    Get PDF
    Evolutionary history has provided insights into the assembly and functioning of plant communities, yet patterns of phylogenetic community structure have largely been based on non-dynamic observations of natural communities. We examined phylogenetic patterns of natural colonization, extinction and biomass production in experimentally assembled communities.We used plant community phylogenetic patterns two years after experimental diversity treatments (1, 2, 4, 8 or 32 species) were discontinued. We constructed a 5-gene molecular phylogeny and statistically compared relatedness of species that colonized or went extinct to remaining community members and patterns of aboveground productivity. Phylogenetic relatedness converged as species-poor plots were colonized and speciose plots experienced extinctions, but plots maintained more differences in composition than in phylogenetic diversity. Successful colonists tended to either be closely or distantly related to community residents. Extinctions did not exhibit any strong relatedness patterns. Finally, plots that increased in phylogenetic diversity also increased in community productivity, though this effect was inseparable from legume colonization, since these colonists tended to be phylogenetically distantly related.We found that successful non-legume colonists were typically found where close relatives already existed in the sown community; in contrast, successful legume colonists (on their own long branch in the phylogeny) resulted in plots that were colonized by distant relatives. While extinctions exhibited no pattern with respect to relatedness to sown plotmates, extinction plus colonization resulted in communities that converged to similar phylogenetic diversity values, while maintaining differences in species composition

    Assessing the homogenization of urban land management with an application to US residential lawn care.

    Get PDF
    Changes in land use, land cover, and land management present some of the greatest potential global environmental challenges of the 21st century. Urbanization, one of the principal drivers of these transformations, is commonly thought to be generating land changes that are increasingly similar. An implication of this multiscale homogenization hypothesis is that the ecosystem structure and function and human behaviors associated with urbanization should be more similar in certain kinds of urbanized locations across biogeophysical gradients than across urbanization gradients in places with similar biogeophysical characteristics. This paper introduces an analytical framework for testing this hypothesis, and applies the framework to the case of residential lawn care. This set of land management behaviors are often assumed--not demonstrated--to exhibit homogeneity. Multivariate analyses are conducted on telephone survey responses from a geographically stratified random sample of homeowners (n = 9,480), equally distributed across six US metropolitan areas. Two behaviors are examined: lawn fertilizing and irrigating. Limited support for strong homogenization is found at two scales (i.e., multi- and single-city; 2 of 36 cases), but significant support is found for homogenization at only one scale (22 cases) or at neither scale (12 cases). These results suggest that US lawn care behaviors are more differentiated in practice than in theory. Thus, even if the biophysical outcomes of urbanization are homogenizing, managing the associated sustainability implications may require a multiscale, differentiated approach because the underlying social practices appear relatively varied. The analytical approach introduced here should also be productive for other facets of urban-ecological homogenization
    corecore