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Abstract. Imaging spectroscopy provides the opportunity to incorporate leaf and canopy
optical data into ecological studies, but the extent to which remote sensing of vegetation can
enhance the study of belowground processes is not well understood. In terrestrial systems, above-
ground and belowground vegetation quantity and quality are coupled, and both influence below-
ground microbial processes and nutrient cycling. We hypothesized that ecosystem productivity,
and the chemical, structural and phylogenetic-functional composition of plant communities
would be detectable with remote sensing and could be used to predict belowground plant and
soil processes in two grassland biodiversity experiments: the BioDIV experiment at Cedar Creek
Ecosystem Science Reserve in Minnesota and the Wood River Nature Conservancy experiment
in Nebraska. We tested whether aboveground vegetation chemistry and productivity, as detected
from airborne sensors, predict soil properties, microbial processes and community composition.
Imaging spectroscopy datawere used to map aboveground biomass, green vegetation cover, func-
tional traits and phylogenetic-functional community composition of vegetation. We examined
the relationships between the image-derived variables and soil carbon and nitrogen concentra-
tion, microbial community composition, biomass and extracellular enzyme activity, and soil pro-
cesses, including net nitrogen mineralization. In the BioDIV experiment—which has low overall
diversity and productivity despite high variation in each—belowground processes were driven
mainly by variation in the amount of organic matter inputs to soils. As a consequence, soil respi-
ration, microbial biomass and enzyme activity, and fungal and bacterial composition and diver-
sity were significantly predicted by remotely sensed vegetation cover and biomass. In contrast, at
Wood River—where plant diversity and productivity were consistently higher—belowground
processes were driven mainly by variation in the quality of aboveground inputs to soils. Conse-
quently, remotely sensed functional, chemical and phylogenetic composition of vegetation pre-
dicted belowground extracellular enzyme activity, microbial biomass, and net nitrogen
mineralization rates but aboveground biomass (or cover) did not. The contrasting associations
between the quantity (productivity) and quality (composition) of aboveground inputs with
belowground soil attributes provide a basis for using imaging spectroscopy to understand below-
ground processes across productivity gradients in grassland systems. However, a mechanistic
understanding of how above and belowground components interact among different ecosystems
remains critical to extending these results broadly.

Key words: biodiversity; ecosystem processes; hyperspectral data; imaging spectroscopy; microbial bio-
mass; phylogenetic-functional groups; plant traits; productivity; remote sensing; soil enzyme activity; soil pro-
cesses; vegetation chemistry.
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INTRODUCTION

Monitoring biodiversity and understanding its conse-
quences for ecosystem functions and global processes
are critical challenges in the face of rapid global change.
Remote sensing has proven useful for observing ecosys-
tem functions such as total biomass production (Gamon
et al. 1999, Williams et al. 2020) across spatial scales and
temporal resolutions because reflectance and absorption
of light by vegetation canopies is strongly influenced by
their structural, biochemical, physiological, and pheno-
logical characteristics (Ustin and Gamon 2010, Sch-
midtlein et al. 2012). The functional variation in
vegetation can be detected using imaging spectroscopy
(aka hyperspectral imagery) (Asner and Martin 2009,
Asner et al. 2011, Wang et al. 2016, 2019, Schneider
et al. 2017, Schweiger et al. 2017, Williams et al. 2020),
therefore enabling hyperspectral remote sensing as an
approach to test the drivers of ecosystem processes that
can be detected aboveground.
In contrast with aboveground processes and attri-

butes, detecting belowground processes remotely
remains technically challenging and enigmatic. Never-
theless, the composition, function and diversity of plant
assemblages are well known to affect belowground pro-
cesses (Hooper and Vitousek 1998, Eviner and Chapin
2003, Meier and Bowman 2008, Bardgett and van der
Putten 2014, Hobbie 2015). Plants synthesize a wide
variety of chemical and structural compounds to sup-
port physiological functions, and the abundance and
chemical composition of plant tissues and plant exu-
dates influence soil microbial diversity and abundance
(Meier and Bowman 2008, Hobbie 2015). Given that
plant reflectance spectra are aggregate indicators of
chemistry, composition, and abundance of plants within
communities (Schmidtlein 2005, Townsend et al. 2013,
Serbin et al. 2014, Singh et al. 2015, Schweiger et al.
2018), it is appropriate to ask whether we can remotely
sense attributes of vegetation that predict belowground
processes (Madritch et al. 2014, Cavender-Bares et al.
2017).
Both quantity and quality of inputs from above to

belowground may influence belowground processes. The
total quantity of inputs to the soil from above and
belowground primary productivity is expected to influ-
ence microbial processes by providing energy to fuel soil
microbes (Zak et al. 1994, Hättenschwiler and Jørgensen
2010). Therefore, higher rates of plant inputs (above and
belowground) to soils are often associated with higher
rates of soil respiration, enzyme activity, and nutrient
mineralization (Zak et al. 1990, Cline et al. 2018).
The chemistry (“quality”) of organic matter inputs to

the soil can also influence the abundance of different
microbial organisms with contrasting metabolic capaci-
ties (Degens and Harris 1997, Wardle et al. 2004, Cline
et al. 2018). Variation in quality of inputs results from
variation in plant foliar and root chemistry because live

and dead plant parts include a diversity of organic mole-
cules—such as soluble sugars, cellulose, hemicellulose,
lignin, and tannins—which vary greatly in how readily
they can be broken down by microbes (Degens and Har-
ris 1997, Meier and Bowman 2008, Freschet et al. 2012).
Variation in plant nutrient concentrations, therefore,
influences organic matter decomposition and nutrient
dynamics (Parton et al. 2007, Cornwell et al. 2008, For-
nara et al. 2009).
Plant chemical diversity is in turn linked to physiologi-

cal function associated with functional groups that often
have a phylogenetic basis due to shared ancestry
(Cadotte et al. 2009, Kothari et al. 2018), such as nitro-
gen fixation in legumes and C4 photosynthesis (Hooper
and Vitousek 1998, Craine et al. 2002). Plants can, there-
fore, be meaningfully categorized into phylogenetic-
functional groups (Kothari et al. 2018) that have a high
potential to be remotely detected (Cavender-Bares et al.
2016, Schweiger et al. 2018, Wang et al. 2019, Meireles
et al. 2020) as a basis to predict belowground processes
(Madritch et al. 2014). Even differentiation between
monocots and dicots can be informative. For example,
despite high variability, inputs from forbs and legumes
tend to be characterized by high nitrogen content and
soluble sugars (Adams et al. 2016), which may favor
microorganisms with high hydrolytic capacity. In con-
trast, inputs from grasses (monocots), particularly C4
grasses, tend to be characterized by high cellulose and
hemicellulose but low nitrogen content (Craine et al.
2001), which may favor microorganisms with high cellu-
lose degrading activity. Therefore, variation in plant
composition—measured in terms of plant chemistry and
function or in terms of variation in phylogenetic-
functional group representation—is expected to influ-
ence microbial and soil processes, independent of the
total quantity of inputs.
The capability of airborne imaging spectroscopy to

accurately detect plant chemistry and productivity pro-
vides an important means to estimate both the quality
and the quantity of aboveground inputs to the soil over
large spatial scales (Kokaly et al. 2009, Asner et al. 2011,
Serbin et al. 2014, Singh et al. 2015, Wang et al. 2019).
Remotely sensed information may be useful in under-
standing soil processes both because aboveground inputs
are significant sources of organic matter to soils and/or
because above and belowground attributes (total net pri-
mary productivity [NPP], and chemical constituents)
may be coupled. For example, in aspen (Populus tremu-
loides) stands, variation in canopy chemistry among
genotypes—including condensed tannins, lignin, and
nitrogen concentrations—was associated with foliar
spectra and correlated with belowground processes
(Madritch et al. 2014). In Hawaii, airborne spectroscopy
detected the major source of variation in canopy nitro-
gen associated with both planted native nitrogen fixing
trees (Acacia koa) and invading N fixers (Myrica faya)
(Asner et al. 2008, Vitousek et al. 2009), which alter
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chemical inputs to soil microorganisms and influence
soil processes (Vitousek 2004). Unlike in these forest sys-
tems, organic matter inputs to soils in many grasslands
are dominated by belowground productivity (Hui and
Jackson 2006). Nevertheless, aboveground processes
such as photosynthesis are essential for providing below-
ground resources in grasslands, and the coupling of the
drivers of aboveground primary production (quantity
and chemistry) to those belowground could enable pre-
diction of belowground processes and properties using
remote sensing.
Here we investigated the extent to which we could

remotely sense aboveground productivity, plant func-
tion, phylogenetic-functional group composition and
spectral diversity at the scale of individual plant commu-
nities to predict belowground microbial (fungal and bac-
terial) biomass, composition, diversity and extracellular
enzyme activity; net nitrogen mineralization rates; soil
respiration; and soil carbon and nutrient concentrations.
This work was conducted at the long-term prairie diver-
sity experiment (BioDIV) at the Cedar Creek Ecosystem
Science Reserve (CCESR) in central Minnesota (Tilman
et al. 2001) and a more recent prairie diversity experi-
ment at Wood River in central Nebraska established by
the Nature Conservancy (TNC) (Nemec et al. 2013).
The two experiments occurred on different parts of the
diversity–productivity gradient found in natural,
degraded and restored prairie systems (Jelinski et al.
2011), with the BioDIV experiment falling at the lower
end of the gradient and Wood River at the higher end.
Previous work in the BioDIV experiment at CCESR

showed strong linkages between aboveground plant
composition and diversity to soil carbon and nutrients
and microbial diversity and composition (Zak et al.
2003, Waldrop et al. 2006, Fornara et al. 2009, Steinauer
et al. 2015, Cline et al. 2018, Yang et al. 2019). In partic-
ular, higher fungal richness was associated with increas-
ing aboveground plant biomass—and therefore total
plant-derived substrate inputs to soils—while fungal
community composition and soil carbon and nitrogen
cycling and pools were associated with plant functional
group diversity, and the relative abundance of C4 grasses
and legumes (Fornara et al. 2009, Cline et al. 2018).
Linkages between above and belowground processes
have not yet been examined in the Wood River experi-
ment, nor have linkages between remotely sensed vari-
ables and belowground processes in either experiment.
Our primary goals were (1) to decipher the mecha-

nisms linking above and belowground processes in two
contrasting grassland systems that differ in productivity,
diversity, and soil type, and (2) to test the extent to
which remotely sensed aboveground productivity, chemi-
cal characteristics, and phylogenetic-functional commu-
nity composition can reveal belowground processes,
microbial diversity and soil attributes. In pursuing these
goals, we examined how well remotely sensed imaging
spectroscopy could characterize aboveground functional
and chemical composition, diversity and productivity

and the strength and nature of the linkages among
aboveground and belowground components and pro-
cesses.
By comparing two experimental prairie systems that

differed in the degree and range of plant diversity and
productivity, but had similar functional group composi-
tion, we sought to understand whether relationships
determined in one system applied to another system and
what aspects of the linkages between aboveground and
belowground processes must be understood to use
remote sensing as a means to predict changes in below-
ground properties and processes. We hypothesized that
the ecosystem productivity and the types of morpho-
physiological and chemical properties of vegetation that
vary among phylogenetic-functional groups would influ-
ence belowground productivity, composition and diver-
sity of microbial communities and drive belowground
ecosystem processes. We also hypothesized that the two
systems would differ in the relative importance of the
quantity (aboveground productivity) and the quality
(chemical composition and phylogenetic-functional
group composition) of inputs to the soil in driving
belowground processes. In BioDIV—where productivity
was relatively low—we expected effects of substrate
quantity to overwhelm those of substrate quality,
whereas in Wood River—where productivity was com-
paratively high—we expected the effects of substrate
quality to be more apparent (Fig. 1). In both systems,
we predicted that plant diversity would have a direct
influence on productivity but would influence below-
ground processes primarily through its influence on pro-
ductivity and the chemistry of plant inputs to soils. We
tested these hypotheses using structural equation models
(SEMs).
Our study, therefore, investigates how the quality and

quantity of aboveground inputs influence belowground
processes and attributes using imaging spectroscopic
data to detect plant productivity, chemical and func-
tional composition, and taxonomic, phylogenetic and
functional diversity based on foliar chemical traits.
Using this integrated approach, we determine the extent
to which belowground processes can be inferred from
imaging spectroscopy once mechanisms linking above
and belowground processes have been characterized.

METHODS

Study areas

The study was conducted at CCESR (East Bethel,
Minnesota) in the long-term BioDIV experiment and at
the Wood River prairie restoration experiment main-
tained by TNC near Wood River, Nebraska (Appendix
S1: Fig. S1). The sites differ in soil type, plot size, plot
number, species composition, and the range of species of
richness and aboveground productivity within plots.
The BioDIV experiment (45°24011″N, 93°11021″W)

was established in 1994 (Tilman 1997, Tilman et al.
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2001). Cedar Creek is located on a sandy glacial outwash
plain and the soils where BioDIV is located are Typic
Udipsamments (Grigal et al. 1974). Prior to the estab-
lishment of the experiment, topsoil was removed. In the
full experiment, 1, 2, 4, 8, 16 or 32 perennial grassland
species were planted from a pool of 34 species (eight spe-
cies, each, of C4 grasses, C3 grasses, legumes, non-
legume forbs; two species of woody plants) in a total of
342 9 × 9 m plots, separated by 1.5 m of grass or bare
soil. Of these, 154 have species composition and species
richness levels maintained by annual weeding. The plots
are also burned annually—such that annual above-
ground biomass is a measure of aboveground productiv-
ity—with the consequence that litterfall has limited
impact on soil organic matter buildup. We collected data
in a subset of plots covering planted diversity levels
ranging from 1 to 16 species per plot. The number of
plots sampled and the specific measurements taken in
each year are given in Appendix S2: Table S1.
The Wood River TNC experiment is a prairie restora-

tion study along the Platte River, 10 km south of Wood
River, Nebraska (40°440370 0N, 98°3502600W). The site is
located within the Platte River floodplain and soils are
of loamy alluvium or sandy alluvium parent material
(NCSS 2010). The site is characterized by a high water
table, poor drainage, and high soil organic content

(Jelinski and Currier 1997) and was farmed as a corn
and soybean rotation before being converted into an
experimental prairie (Nemec et al. 2013). The TNC
study area includes 36 60 × 60 m plots across two
fields. The site therefore has much larger plot sizes but
fewer plots than BioDIV. As described in Nemec et al.
(2013) and Gholizadeh et al. (2019), one set of 12 plots
was seeded in 2010 (“young plots”) at low, medium and
high species richness levels—with measured species
richness per plot in 2017 ranging from 11 to 48 species.
An earlier set of 24 plots was seeded in 2006 (“old
plots”) with two diversity levels and two seeding rates.
Plots are not weeded, and measured species richness in
the old plots in 2017 varied from 28 to 46 species per
plot. We collected leaf-level spectral data, soil samples,
and annual aboveground biomass in all of the young
plots and in the 12 old plots with low seeding rate at
both low and high diversity levels. Our study therefore
includes a total of 24 3600-m2 plots. Given the large
size of the plots, and heterogeneity within them, includ-
ing gradients in hydrology toward the Platte River, we
sampled eight 6-m2 subplots within each plot for a total
of 192 subplots. Like the BioDIV, experiment, the site
is managed with prescribed fires, although less fre-
quently, and was last burned in late March 2015, two
years prior to our study.

FIG. 1. Both the quantity (productivity) and quality (phylogenetic, functional and chemical composition) of inputs from above-
ground vegetation into the soil are important in influencing belowground microbial processes and nutrient cycling. However, the
relative importance of these characteristics of inputs varies among systems. Shown are distinct hypotheses for how attributes of veg-
etation that can be remotely sensed influence and are therefore useful in predicting soil microbial processes and nutrient availability
in two contrasting prairie grassland diversity experiments. The BioDIV experiment at Cedar Creek varies in species density from
one to 16 species per 81 m2, which has led to high variation among plots in annual productivity over time (from 25 to 283 g/m2). In
this system, productivity (the quantity of inputs) is hypothesized to be the dominant driver of variation in belowground processes.
The Wood River experiment has higher overall species density (one to 13 species per 1 m2 or 10–46 species per 1,200 m2) and pro-
ductivity (285–1,079 g/m2). As a consequence, the total quantity of inputs is less likely to be limiting, and functional group compo-
sition and the resulting variation in vegetation chemistry (quality of inputs) are hypothesized to play a more dominant role in
driving belowground processes. These conceptual diagrams are the basis for our structural equation models presented in Fig. 7.
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Several previous studies at each site used the airborne
imagery, some of the soil data, and some of the leaf func-
tional trait data (Appendix S2: Table S1). This study
goes beyond previous work by measuring soil processes
at Wood River, adding new microbial data to BioDIV,
quantifying leaf-level functional traits using spec-
troscopy and mapping these traits as well as
phylogenetic-functional groups at the landscape scale in
Wood River, and by examining the associations between
remotely detected spectroscopic information from
aboveground vegetation and belowground processes. In
combination, these studies represent a synthesis of our
efforts to decipher the spectral signatures of plants and
how they relate to ecosystem processes, with a focus on
links between aboveground and belowground states and
processes.

Soil sampling

In the BioDIV experiment, soil was sampled to quan-
tify microbial respiration from year-long incubations,
net nitrogen mineralization, extracellular enzyme activ-
ity, and soil carbon and nitrogen concentrations. Soil
was sampled to a depth of 10 cm at 1 m from the plot
edge in four corners as well as the center (2 cm diameter,
5 cores/plot) and combined into a single sample per plot.
In July 2014, 35 plots were sampled. Additional cores
were taken in early August 2014 and washed over a
1 mm sieve to collect roots. In July 2015, 125 plots (in-
cluding the 35 plots from the 2014 sampling) were sam-
pled. Soil carbon and nitrogen concentrations were
measured in 154 plots using the same sampling approach
in 2014, 2015, and 2016; means across years are pre-
sented here.
In the Wood River experiment, in 2017 soil was sam-

pled to a depth of 10 cm in the center of each 6-m2 sub-
plot located along transects approximately 20–22 m
from the western and eastern borders of each plot and
starting 12, 24, 36 and 48 m from the southern borders
(192 subplots in total). From two aggregated soil cores
per subplot, soil carbon and nitrogen, extracellular
enzyme activity, potential net mineralization rate, and
microbial biomass were measured.
Soils were composited by plot (BioDIV) or subplot

(Wood River) and sieved (2 mm). Subsamples were dried
(65°C, 48 h), milled, and total soil carbon and nitrogen
measured by combustion using a Costech ECS4010 ele-
ment analyzer (Valencia, California, USA). Subsamples
of 2015 fresh soils from BioDIV were transported on ice
and stored at −80°C for molecular characterization of
bacteria and fungi. Note that soil analyses from BioDIV
in 2015 were presented previously in Cline et al. (2018).
We include those data as part of new analyses here.
In both experiments, soils were analyzed for microbial

biomass carbon using a chloroform fumigation direct
extraction procedure (Brookes et al. 1985). Within one
to two weeks after collection and storage at 4°C, sub-
samples of sieved soil were extracted with 0.5 mol/L

K2SO4 (unfumigated) or extracted following fumigation
in a chloroform atmosphere for 3 d (fumigated). Total
dissolved carbon in extracts was determined on a TOC/
TN analyzer (Shimadzu TOC-V, Shimadzu Corpora-
tion, Kyoto, Japan). Soil microbial biomass carbon and
nitrogen were calculated as the difference between
extractable carbon and nitrogen in the fumigated and
unfumigated samples.

Soil process rates

Total soil respiration rate was measured in the Bio-
DIV experiment in 2015 as the accumulation of CO2

from 50 g of soil in airtight 1 L Mason jars during 24–
48 h intervals on 16 dates throughout a year-long aero-
bic incubation (Cline et al. 2018). Cumulative carbon
respired (mgfnd="ER">CO2-C�[g soil]−1) was calculated
as the sum of the average respiration rate between adja-
cent measurement dates multiplied by the time interval
between measurements and divided by the initial soil
mass. We calculated net nitrogen mineralization rates
(μg N�[g soil]−1�d−1) as the difference between initial and
final 2 mol/L KCl-extractable concentrations of nitrogen
as NHþ

4 and NO�
3 (Horwáth 2003) from 30-d incuba-

tions of field-moist soils in the laboratory, measured
using microplate salicylate and sulfanilamide methods,
respectively, on a BioTek Synergy H1 microplate reader
(Winooski, Vermont, USA).

Root chemistry

Roots were oven dried at 65°C for biomass determina-
tion. Root carbon fractions (cell solubles, hemicellulose
and bound proteins [hemicellulose, from this point for-
wards], cellulose, and acid non-hydrolyzable residue, a
measure of lignin plus recalcitrants [lignin, from this
point forwards]) were determined with sequential diges-
tion using an ANKOM fiber analyzer (ANKOM Tech-
nology, Macedon, New York, USA). Carbon and
nitrogen concentration (% dry mass) were determined
using combustion–reduction elemental analysis (TruS-
pec CN Analyzer; LECO, St. Joseph, Michigan, USA).

Fungal and bacterial sampling

Fungal and bacterial composition and diversity were
only determined in the BioDIV experiment. Soil samples
were collected for the same 35 plots used for other analy-
ses in 2014 and DNA extracted using the Fas-tDNA
SPIN Kit (MP Biomedical, Solon, Ohio, USA). Fungal
DNA analyses were reported in Cline et al. (2018).
Briefly, polymerase chain reaction (PCR) amplification
of the ITS1 gene region was conducted using primers
ITS1F and ITS2 (Smith and Peay 2014). Sequencing was
performed on the MiSeq platform (Illumina, San Diego,
California, USA) with 250 paired-end reads at West Vir-
ginia University’s Genomic Core Facility. For bacterial
DNA analyses, which were not previously reported, 16S
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rRNA genes were amplified by PCR and sequenced at
the West Virginia Genomics Core Facility in Morgan-
town, West Virginia, for sequence analysis with the Illu-
mina MiSeq platform (Illumina, San Diego, California,
USA) with 250 paired-end reads at West Virginia
University’s Genomic Core Facility. Detailed methods
are provided in the supplemental material (Appendix
S3). Aligned and screened sequences were clustered at
97% similarity and operational taxonomic unit (OTU)
classification of unique sequences was completed using
the Ribosomal Database Project (RDP) taxonomic data-
base (release 9; Cole et al. 2009) and rarified to account
for variation in the number of sequence reads per sam-
ple. Fastq files are stored with NCBI (SRA accession:
108802). Total OTU richness and inverse Simpson diver-
sity are reported for fungi and bacteria; fungal OTU
richness was previous published (Cline et al. 2018). We
used non-metric multidimensional scaling (NMDS)
analyses to describe the fungal and bacterial communi-
ties within each BioDIV plot using metaMDS in the “ve-
gan” package in R (Oksanen et al. 2018). We used an
unconstrained NMDS approach because our goal was
to describe the microbial communities with as few
assumptions as possible rather than determine how
much of the variation in microbial community structure
was driven by environmental variables (Kuczynki et al.
2010).

Extracellular microbial enzyme activity

In both the BioDIV and Wood River sites, we esti-
mated the hydrolytic and oxidative (lignolytic) enzyme
activity of soil communities using extracellular enzyme
assays as described in Cline et al. (2018). We measured
activity of α-glucosidase (AG, EC 3.2.1.20), β-1,4-
glucosidase (BG, EC 3.2.1.21), cellobiohydrolase (CBH,
EC 3.2.1.91), β-1,4-xylosidase (BX, EC 3.2.1.37), and N-
acetyl-β-glucosaminidase (NAG, EC 3.1.6.1), using
methylumbellyferyl (MUB)-linked substrates (German
et al. 2011). A 25-mmol/L L-dihydroxy-phenylalanine
substrate was used to assay phenol oxidase (PO, EC
1.10.3.2) and peroxidase (PX, EC 1.11.1.7) activity.
Hydrolytic enzyme potential was calculated as the sum
of the activities of CBH, AG, BG, BX, and NAG, and
oxidative activity was calculated as the sum of PX and
PO.

Aboveground biomass and species sampling

At the BioDIV site, we quantified plot productivity
and the relative dominance of plant functional groups
by collecting aboveground plant biomass (g/m2) within
the plots that are maintained for species richness levels
1–16 (2014, n = 121; 2015, n = 154; 2016, n = 154) in a
9 m × 6 cm strip clip in late-July of each year. These
plots include those in which soils were sampled. Above-
ground biomass was sorted by plant species, dried at
60°C for 48 h and weighed. Aboveground biomass was

assigned to 79 plant species and four plant phylogenetic-
functional groups, including C3 grasses, C4 grasses,
forbs and legumes, as well as the two major phylogenetic
groups, monocots and dicots. We quantified total above-
ground biomass of each plot, as well as the relative pro-
portion of biomass (i.e., relative dominance) made up by
individual plant functional groups. Vegetation cover was
estimated using the point-quadrat method in 35 plots in
2014 (the same plots in which soil samples were collected
that year).
At the Wood River site, we sampled aboveground bio-

mass and percent cover of species within two 0.5 m2

areas within each subplot. These metrics were used to
determine species richness and abundance at the subplot
scale. In addition, we recorded presence of species along
two 1-m wide transects, each centered approximately
20 m from the eastern and western borders of the plots.
These data were used to determine species richness at
the whole-plot scale.

Foliar sampling

At the BioDIV site, spectral sampling at the leaf level,
the collection of foliar samples, chemical assays and the
prediction of foliar traits from spectra were described in
detail in Schweiger et al. (2018). An SVC full-range
(400–2,500 nm) portable spectrometer (Spectra Vista
Corporation, Poughkeepsie, New York, USA) with a
leaf clip and tungsten-halogen light source (LC-RP
PRO; Spectra Vista Corporation) was used to obtain
foliar spectra and develop leaf trait models. Leaf-tissue
samples of 130 individuals from 62 species were collected
together with leaf spectra in the summers of 2015 and
2016 at the CCESR, flash frozen in liquid nitrogen and
stored at −80°C for subsequent pigment analysis. An
additional set of 130 samples of 61 species were spec-
trally sampled and oven dried at 65°C for chemical anal-
yses of non-labile constituents. Pigment concentration
and area-based pigment content was determined on
flash-frozen samples using high-performance liquid
chromatography (HPLC, Agilent 1200 Series; Agilent
Technologies, Santa Clara, California, USA). The pig-
ments included chlorophyll a, chlorophyll b, one caro-
tene pigment (β-carotene), and five xanthophylls (lutein,
zeaxanthin, violaxanthin, antheraxanthin, and neoxan-
thin). The total carotenoid pigment pool was calculated
as the sum of five xanthophyll pigments plus β-carotene
(Croft and Chen 2018). Carbon fraction concentrations
(% dry mass) were determined with sequential digestion,
as described for roots above, for soluble cell contents,
hemicellulose, cellulose, and lignin. Carbon and nitrogen
concentration (% dry mass) were determined using com-
bustion–reduction elemental analysis (TruSpec CN Ana-
lyzer; LECO, St. Joseph, Michigan, USA). Bivariate
trait relationships are shown in the correlation matrix in
Appendix S1: Fig. S2.
At the BioDIV site, leaf-level spectra were measured

in four to eight 1-m2 subplots per plot, as described in
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Schweiger et al. (2018). At the Wood River site, leaf-
level spectra were collected at regular intervals of 2 m
along two transects starting at 2 m from the southern
border and ending at 58 m, yielding a total of 29 individ-
ual plants measured per plot. Foliar trait models for all
pigments, all carbon fractions, C and N were developed
using partial least square regression (PLSR; Martens
and Naes 1989, Wold et al. 1983) implemented in R (R
Development Core Team 2018) using the R package
“plsRglm” (Bertrand et al. 2014) and are reported in
Schweiger et al. (2018). Model performance ranged
between 0.53 and 0.84 R2. The models were applied to
all 1,129 leaf-level spectra collected in the BioDIV exper-
iment and all 1,399 leaf-level spectra collected at Wood
River. A PLSR model built from 892 grass and forb
samples with concurrent SVC spectra collected during
peak growing season in grassland ecosystems near
Madison, Wisconsin was used to predict leaf mass per
area (LMA, g/m2) for each individual plant sampled in
the BioDIV (Wang et al. 2019) and Wood River experi-
ments.
Species mean leaf-level traits were scaled to the plot

level based on relative biomass at the BioDIV experi-
ment (Wang et al. 2019). At Wood River, species mean
traits were scaled to the subplot level using percent
cover. The same was done for phylogenetic-functional
groups. The whole-plot-level and whole-subplot-level
trait estimates, respectively, were matched to spectra
extracted from airborne imagery to develop trait maps,
as described below.

Airborne spectroscopic data collection, trait and
phylogenetic-functional group mapping

Imaging spectroscopy data from the Airborne Visible/
Infrared Imaging Spectrometer—Next Generation
(AVIRIS-NG, Hamlin et al. 2011) were collected at Bio-
DIV with a spatial resolution of 0.9 m on the ground by
the National Aeronautics and Space Administration
(NASA) on August 25, 2014, August 30, 2015 and
August 31, 2016 (Wang et al. 2019). The AVIRIS-NG
reflectance data comprise 432 spectral bands and span
380 nm to 2,510 nm with a spectral resolution of 5 nm.
At Wood River, airborne imaging spectroscopy data
were collected on August 23, 2017, with a spatial resolu-
tion of 1 m on the ground by an AISA Kestrel (Specim,
Oulu, Finland) sensor operated by the University of
Nebraska’s Center for Advanced Land Management
Information Technologies (CALMIT) (Gholizadeh et al.
2019). The AISA Kestrel reflectance data comprised 178
spectral bands and spanned 400 nm to 1,000 nm with a
spectral resolution of approximately 3.5 nm (Gholizadeh
et al. 2020). We used PLSR (Wold et al. 1983) as imple-
mented in the R package “pls” (Mevik et al. 2018) to
model and predict biomass, functional group composi-
tion and foliar functional traits from imaging spec-
troscopy data, an approach widely used for the retrieval
of plant traits and vegetation parameters (Asner and

Martin 2008, Serbin et al. 2014, Asner et al. 2015, Singh
et al. 2015, Wang et al. 2019).
In BioDIV, plot-level trait data were linked to the

spectroscopic images as reported in Wang et al. (2019).
In short, models for predicting functional traits from
remotely sensed spectra were developed based on
AVIRIS-NG spectra and leaf trait models (Schweiger
et al. 2018) scaled to the plot level with PLSR using
plsregress in MATLAB (The MathWorks, Inc., Natick,
Massachusetts, USA) (Wang et al. 2019). We modeled
vegetation cover as a function of the mean spectral
angles between soil and vegetation spectra per plot using
logistic regression (see Serbin et al. 2015) and predicted
vegetation cover for all the pixels in the three images
based on the resulting regression equation. We used a
7 × 7 pixel window centered in the 9 m × 9 m plots, and
used mean spectra and trait estimates by plot as model
inputs. Pixels with vegetation cover of less than 20%
were excluded from analysis. For trait mapping, we
applied PLSR coefficients to all pixels in the AVIRIS-
NG images. For analysis with soils data, we used the pre-
dicted mean vegetation traits per plot for the central
7 × 7 pixel window and again excluded pixels with
<20% cover.
In Wood River, similar to the approach used for mod-

eling functional traits in BioDIV, we used plot-level and
subplot-level trait estimates and airborne spectra
extracted from the same plots and subplots to model
biomass and functional group composition and func-
tional traits, including foliar soluble cell contents and
the contents of carbon, nitrogen, hemicellulose and lig-
nin with PLSR; here we used the R package“pls” (Mevik
et al. 2018). For modeling biomass, phylogenetic-
functional group composition and chemical traits, 25%
of the full dataset was set aside for independent valida-
tion of the models; 75% was used to develop the models.
Of this portion of the data, we used, depending on the
number of observations, 75% or 80% of the data for
model calibration and the rest for validation over 500
model runs. To avoid overfitting, the number of compo-
nents used in PLSRwas selected by minimizing the mean
root mean square error (RMSE) and the cross-validated
Prediction Residual Error Sum of Squares (PRESS)
(Chen et al. 2004). The mean model coefficients with sig-
nificant fits (P < 0.05) were then applied to the spectral
images to predict pixelwise biomass, functional group
composition, and chemical traits. Model performance
was assessed based on the R2 for linear regressions
between measured and predicted values, the RMSE, %
RMSE and model bias (see Appendix S2: Table S2). As
the plots at the Wood River site had no significant soil
exposure, pixels were not filtered based on vegetation
cover.

Diversity metrics

Phylogenetic species richness (PSR) (Helmus 2007)
was calculated using the phylogeny from Smith and
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Brown (2018), pruned to include the measured species in
the BioDIV experiment and the WoodRiver experiment
separately. Absent species were added within the correct
genus in a randomly assigned location using the con-
generic merge function in “pez” in R (Pearse et al. 2015).
Functional diversity was calculated using Scheiner’s
functional dispersion [FD(qDTM)] (Scheiner et al.
2017) using biomass or percent cover (at Wood River) of
each species within each plot to weight the species fol-
lowing Schweiger et al. (2018). Remotely sensed spectral
diversity using AISA airborne data in Wood River was
calculated as Euclidean distances among vector-
normalized reflectance values for all wavelengths among
all pixels per plot, using the dist function in R.

Structural equation modeling

The causal diagrams (Fig. 1) outline our hypotheses
regarding how aboveground vegetation and soil pro-
cesses are connected. We tested the degree of support for
these hypotheses for the BioDIV and Wood River experi-
ments, respectively, with SEMs as implemented in the R
package “lavaan” (Rosseel 2012). Measured variables
were used as indicators of each of the constructs in the
model. We used aboveground biomass as an indicator of
aboveground vegetation quantity and total organic
inputs to soil, given it strongly predicts belowground
root biomass in BioDIV and other prairie systems (For-
nara and Tilman 2008, Appendix S1: Fig. S3). Root bio-
mass per m−2 is nearly five times greater than
aboveground biomass, on average, and is likely to be the
primary source of inputs belowground. We used above-
ground vegetation traits—including foliar chemical com-
position and specific leaf area (SLA)—and functional
group abundance (proportion or biomass) as indicators
of vegetation quality. Hydrolytic enzyme activity, micro-
bial biomass and cumulative soil respiration were used
as indicators of soil microbial activity. Net nitrogen min-
eralization rates and soil carbon and nitrogen concentra-
tion were used as indicators of soil nutrient availability.
To avoid model overfitting, we selected those chemical
vegetation traits and functional groups we considered to
be the most important factors influencing vegetation
quality in our study systems. Although more complex
relationships are theoretically possible, we used linear
specifications for our variables, which were also sup-
ported by the univariate regression analyses.

RESULTS

Consistency between phylogenetic relationships, functional
groups, and functional traits

In both BioDIV and Wood River, the functional
groups that the diverse set of species represents largely
correspond to monophyletic phylogenetic lineages,
nested within the monocots or the dicots (eudicots)—the
two major angiosperm lineages found in these

ecosystems (Fig. 2). Within the monocots, C3 and C4
grasses in these experimental systems each fall within
individual monophyletic lineages. The legumes and the
forbs also each fall within distinct phylogenetic clades
and—together with the small number of woody plants
occasionally in the plots—are collectively nested within
the dicot lineage. As a consequence, we refer to the func-
tional groups as phylogenetic-functional groups.
The morphological and chemical traits of species also

tended to correspond to their phylogenetic-functional
group identities. Differences in vegetation chemistry
were consistently pronounced between monocots and
dicots. In both systems, monocots (C3 and C4 grasses)
had lower LMA, foliar nitrogen and lignin concentra-
tions, lower cell soluble concentrations, and higher hemi-
cellulose and cellulose concentrations compared with the
forb and legume groups within the dicots (Table 1). The
C4 grasses, in particular, tended to have high cellulose
and hemicellulose concentrations. In contrast, the dicots
tended to have lower foliar hemicellulose and cellulose
concentrations and somewhat higher foliar nitrogen and
lignin concentrations than the monocots (Fig. 2,
Table 1). Differences between groups within these two
major lineages depended on the compound and to some
extent, the site. Legumes had higher foliar nitrogen and
lignin concentrations than the other groups at the Wood
River site but only significantly higher foliar nitrogen
and lignin than C4 grasses in BioDIV (Table 1). C4
grasses had lower concentrations of foliar nitrogen, lig-
nin and solubles but higher concentrations of cellulose
and hemicellulose than other functional groups, particu-
larly at the Wood River site.

Measured biodiversity-productivity relationships

In the BioDIV experiment, measured species richness
(using 2014 data and counting only species that were orig-
inally planted in the experiment as the other ones are
annually removed), strongly predicted aboveground bio-
mass (R2 = 0.45, N = 153, P < 0.0001, Fig. 3a), as has
been reported numerous times previously (Reich et al.
2012). Productivity was also significantly predicted by
PSR, a measure of phylogenetic diversity that accounts
for shared ancestry and evolutionary distance among spe-
cies (R2 = 0.15, N = 152, P < 0.0001, Fig. 3b), and leaf-
level functional diversity [FD(qDTM)] calculated using
mean traits per species and their abundances, based on
biomass (R2 = 0.39, N = 153, P < 0.0001, Fig. 3c). The
strengths of the relationships in different years were very
similar. In the Wood River experiment, measured species
richness was a weaker predictor of biomass than in the
BioDIV experiment. At the subplot scale (6 m2), species
richness explained 9% of the variation in aboveground
biomass (R2 = 0.09, N = 191, P < 0.0001, Fig. 3d). At
the plot scale, species richness explained 16% in above-
ground biomass (R2 = 0.16, N = 24, P = 0.05, Fig. 3g).
PSR significantly but weakly predicted aboveground bio-
mass at both the subplot scale (R2 = 0.07, N = 191,
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a) b)

FIG. 2. Phylogenetic relationships among species, their functional group categories (forbs, F; legumes, L; C3 grasses, C3; C4
grasses, C4; and woody species, W) and their foliar functional and chemical composition (leaf mass per area, LMA; % N, % lignin;
% cell solubles; % hemicellulose, and % cellulose) in (a) the BioDIV experiment at Cedar Creek and (b) the Wood River experiment
in Nebraska. Note that F, L and W groups are nested within the dicot lineage and C3 and C4 grasses are nested within the mono-
cots. Functional trait values are scaled—centered to their means and divided by their standard deviations—and color-coded with
blue colors indicating low values and yellow or salmon colors indicating high values. Missing values are indicated by a slash.

TABLE 1. Phylogenetic-functional group means � SE for chemical trait values derived from leaf level spectra for monocots, dicots,
C3 grasses, C4 grasses, forbs and legumes.

Monocots Dicots C3 C4 Forbs Legumes

BioDIV LMA 57.05 � 3.69a 86.56 � 5.37b 54.23 � 4.93a 58.11 � 4.85a 80.01 � 4.85b 93.99 � 4.85b
% solubles 26.03 � 2.28a 61.27 � 1.98b 30.46 � 6.49a 24.37 � 2.06a 65.27 � 2.06b 54.62 � 2.06c
% hemicellulose 34.34 � 1.21a 16.70 � 1.51b 31.64 � 3.97a 35.35 � 0.81a 13.72 � 0.81b 21.33 � 0.81c
% cellulose 34.57 � 1.78a 14.07 � 1.16b 31.78 � 3.98a 35.62 � 1.99a 11.38 � 1.99b 19.04 � 1.99c
% ADL 6.28 � 0.45a 9.02 � 0.60b 7.95 � 0.76a 5.66 � 0.37b 9.53 � 0.37ac 8.07 � 0.37abc
% C 45.60 � 0.22a 45.07 � 0.56a 45.35 � 0.24a 45.69 � 0.29a 45.44 � 0.29a 43.95 � 0.29a
% N 1.41 � 0.10a 1.87 � 0.09b 1.76 � 0.17a 1.28 � 0.09b 1.94 � 0.09ac 1.73 � 0.09ac
C:N 34.45 � 2.39a 25.43 � 1.28b 26.49 � 2.97a 37.43 � 2.37b 24.49 � 2.37ac 27.02 � 2.37ac

Wood
River

LMA 75.57 � 5.30a 93.18 � 2.80b 85.75 � 12.55ab 69.47 � 5.30a 93.38 � 3.14b 90.76 � 7.77ab
% solubles 35.64 � 4.46a 70.22 � 1.66b 41.23 � 12.40a 32.28 � 4.46a 71.67 � 1.51b 62.20 � 4.81c
% hemicellulose 20.09 � 2.44a 12.82 � 1.34b 22.21 � 6.01a 18.82 � 2.44a 13.20 � 1.77ab 11.80 � 1.79b
% cellulose 39.07 � 4.27a 15.69 � 1.51b 31.24 � 10.50a 43.77 � 4.27a 14.70 � 1.25b 19.78 � 5.16b
% ADL 9.22 � 0.94a 13.19 � 0.47b 9.38 � 1.91ab 9.12 � 0.94a 12.81 � 0.51c 13.38 � 1.11bc
% C 45.83 � 0.59a 45.52 � 0.47a 46.49 � 1.24a 45.44 � 0.59a 45.57 � 0.57a 44.82 � 0.82a
% N 1.27 � 0.11a 2.00 � 0.06b 1.54 � 0.11a 1.11 � 0.11b 2.00 � 0.07c 2.06 � 0.18ac
C:N 42.03 � 4.93a 24.98 � 1.21b 32.65 � 2.16ab 47.65 � 4.93a 25.17 � 1.53b 24.07 � 2.30b

Notes: For BioDIV, trait values were averaged across all individuals of each of 29 species (Schweiger et al. 2018); for Wood River,
trait values were averaged across all individuals of each of 49 species; phylogenetic-functional group means were averages of species
means. Significant differences between monocots and dicots (left) or among the C3 grass, C4 grass, forb and legume groups (right)
based on Tukey’s HSD tests are shown with different letters, P cutoff = 0.05.
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P < 0.0001, Fig. 3e) and the plot scale (R2 = 0.20,
N = 24, P = 0.026, Fig. 3h). Abundance-weighted func-
tional diversity [FD(qDTM)] also weakly predicted bio-
mass at the subplot scale (R2 = 0.09, df = 190,
P < 0.0001, Fig. 3f) and plot scale (R2 = 0.15, N = 24,
P = 0.066, Fig. 3i).

Remote sensing of biomass (annual productivity)

Annual aboveground plant biomass, which is a mea-
sure of annual aboveground productivity in grasslands,

varied considerably across the plots in the BioDIV
experiment, ranging from approximately 19 to 740 g/m2

and is strongly associated with vegetation cover (Appen-
dix S1: Fig. S3b–d). PLSR models developed for each of
the three years using AVIRIS-NG spectra predicted
plot-level biomass well (Fig. 4a for 2014, Appendix S2:
Table S2). Independent validation results in 2014
(R2 = 0.75, 22 components, %RMSE = 12.05,
P < 0.0001), 2015 (R2 = 0.47, 18 components, %
RMSE = 16.4, P < 0.0001) and 2016 (R2 = 0.64, 18
components, %RMSE = 15.13, P < 0.0001) were

a)

d)

g) h) i)

e) f)

b) c)

FIG. 3. Biodiversity–Ecosystem Function relationships in the BioDIV and Wood River experiments. Shown are regressions
between plant diversity metrics and annual aboveground biomass for BioDIV from 2014, N = 124 (a–c) and Wood River at the sub-
plot scale from 2017, N = 192 (d–f) and plot scale, N = 24 (g–i). Diversity metrics include measured species richness (SR), phyloge-
netic species richness (PSR) and abundance-weighted functional diversity [FD(qDTM)] measured at the leaf level.
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consistent (Appendix S2: Table S2). Remotely sensed
vegetation cover reported in Wang et al. (2019)
(R2 = 0.68, %RMSE = 11)—based on the soil spectral
angle calculated between the averaged soil spectrum and
each pixel in the airborne image for the plot (Serbin
et al. (2015)—also predicted biomass for the three years
using linear regression (Fig. 4b, R2 = 0.63 for 2014, 0.70
for 2015, 0.55 for 2016, N = 153, P < 0.0001 all years,
Appendix S2: Table S2), serving as an accurate proxy of
productivity in this system.
In the Wood River experiment, PLSR models also sig-

nificantly predicted biomass at the subplot scale (R2 =
0.426, 11 components, %RMSE = 19.50, P < 0.0001)
(Fig. 4c, Appendix S2: Table S2). When predicted values
of biomass were applied to every pixel in the plots and
averaged, predicted biomass at the plot scale was
strongly associated with the average measured biomass
in each plot (R2 = 0.76, N = 24, P < 0.0001, Appendix
S1: Fig. S5). In contrast with the BioDIV experiment,
vegetation cover was 100% throughout the experimental
landscape (Gholizadeh et al. 2019) and was not associ-
ated with aboveground biomass (Appendix S1:
Fig. S3d). Consequently, we did not attempt to develop
a PLSR model to predict vegetation cover because it
could not be used as a proxy for biomass at Wood River.
Rather, we used the PLSR model for biomass to predict
aboveground biomass.

Detecting plant phylogenetic-functional groups from
airborne spectroscopic imagery

In the Wood River experiment, the proportion of each
phylogenetic-functional group within a subplot was sig-
nificantly predicted from airborne imagery (Fig. 4d–f,
Appendix S2: Table S2). Independent validation results
from PLSR models at Wood River using AISA Kestrel
for monocot, dicot, legume, forb, C4 grass, and C3 grass
proportions in each subplot show that all are well-
predicted although with somewhat higher accuracy at
broader phylogenetic levels—monocots, dicots—than
for the groups within those (Appendix S2: Table S2). In
BioDIV, PLSR models predicting the biomass of indi-
vidual phylogenetic-functional groups were inconsistent
but most accurate and consistent for monocot biomass
across years (Appendix S2: Table S2). They were gener-
ally not able to predict the proportion of these groups
likely due to the high exposed soil/vegetation cover in
this experiment (Wang et al. 2018) and particularly to
the limited number of plots with a high proportion of
any given functional group that also had low exposed
soil area.

Functional trait models for Wood River

We developed PLSR models to map functional traits
using AISA data at Wood River (Appendix S2:
Table S2), following a similar approach as reported in
Wang et al. (2019) for mapping traits in the BioDIV

experiment from AVIRIS-NG data using % cover to cal-
culate community weighted mean traits. Independent
validation results for predicted foliar concentrations of
nitrogen (R2 = 0.58, components = 5, %RMSE = 16.35,
P < 0.0001, Fig. 4g), cellulose (R2 = 0.42, compo-
nents = 4, %RMSE = 19.30, P < 0.0001, Fig. 4h), lig-
nin (R2 = 0.35, components = 3, %RMSE = 20.75,
P < 0.0001, Fig. 4i) and cell solubles (R2 = 0.35, com-
ponents = 4, %RMSE = 19.56, P <0.0001), as well as
LMA (R2 = 0.44, N = 191, components = 3, %
RMSE = 19.05, P < 0.0001) show that that traits could
be reliably mapped in Wood River using AISA data
(Appendix S2: Table S2).

Detecting plant diversity from remotely sensed spectra

We calculated spectral diversity from airborne data as
the mean of the vector-normalized spectral distances
among all pixels per plot (or subplot), a metric that does
not require site-specific model development. At Wood
River, based on AISA Kestrel data at the plot scale,
spectral diversity readily predicted all measures of plant
diversity, including species richness (R2 = 0.497,
P < 0.0001, Fig. 4j), PSR (R2 = 0.342, P < 0.003, Fig. 4
k), and leaf-level functional diversity [FD(qDTM)]
(R2 = 0.358, P < 0.002, Fig. 4l). These relationships did
not hold at the subplot scale, however, perhaps because
the number of pixels per subplot (6) was insufficient to
capture the variability or because there was limited vari-
ability at this scale, or both. In BioDIV, spectral diver-
sity based on 0.9 m spatial resolution AVIRIS-NG data
did not predict any metric of plant diversity, including
measured species richness. Prior studies at this site have
shown that accuracy in predicting plant diversity is
highly dependent on spatial resolution and the high soil
fraction/vegetation cover fraction poses difficulties for
predicting plant diversity from remotely sensed measures
of spectral diversity at a spatial resolution of ˜1 m
(Wang et al. 2018, Gamon et al. 2020, Gholizadeh et al.
2018).
Remotely sensing the biodiversity-productivity rela-

tionship in either experiment was challenging due to the
inability to predict plant diversity metrics from airborne
data in BioDIV, and due to the relatively weak measured
associations between plant diversity and biomass in
Wood River at either the subplot (Fig. 3d–f) or plot
scale (Fig. 3g–i). Nevertheless, there was a weak rela-
tionship between remotely sensed spectral diversity and
remotely sensed biodiversity at the subplot scale (Appen-
dix S1: Fig. S5c), although this was not significant at the
plot scale (Appendix S1: Fig. S5b). Remotely sensed
spectral diversity at the plot scale was strongly associ-
ated with foliar nitrogen concentration, which may indi-
cate that in ecosystems that are more diverse, plants are
able to acquire more nutrients from the soil and allocate
it to leaves (Williams et al. 2020), but this same pattern
did not emerge at the subplot scale (Appendix S1:
Fig. S5d,e).
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FIG. 4. Detection of aboveground plant biomass (BioDIV and Wood River) and phylogenetic-functional groups, foliar traits
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Associations between total aboveground inputs and
belowground processes and attributes

In the BioDIV experiment, the quantity of total
aboveground inputs—or productivity, measured as
annual aboveground biomass or vegetation cover—but
not their quality, measured as the chemical or
phylogenetic-functional composition, were strongly and
positively associated with hydrolytic enzyme activity but
not oxidative enzyme activity. Vegetation cover and bio-
mass were also positively associated with microbial bio-
mass carbon and nitrogen, net nitrogen mineralization
rate, cumulative respiration rate and soil carbon concen-
tration, but not soil nitrogen concentration (Fig. 5;
Appendix S2: Table S3). Consequently, remotely sensed
vegetation cover significantly predicted cumulative soil
respiration rates, hydrolytic enzyme activity, microbial
biomass carbon, net nitrogen mineralization rates and
soil carbon concentration (Fig. 6a–e). In the Wood
River experiment, the quantity of total aboveground
inputs—measured directly as aboveground biomass or
remotely sensed based on PLSR models—were not asso-
ciated with any of the measured belowground processes
and attributes (Fig. 5). In contrast, foliar nitrogen con-
centration at Wood River measured on the ground
(Appendix S2: Table S3) or mapped from remotely
sensed data significantly predicted microbial biomass,
hydrolytic enzyme activity, net nitrogen mineralization
rate, and total soil nitrogen and carbon (Fig. 6). Foliar
nitrogen concentration in the BioDIV experiment was
not associated with any of these soil characteristics
(Fig. 5, Appendix S2: Table S3).
Plant productivity was strongly associated with soil

fungal and bacterial composition and to a lesser degree
fungal and bacterial diversity in BioDIV. Remotely
sensed vegetation cover significantly predicted the first
axis of NMDS ordination analyses, for both the fungal
(Fig. 6f) and bacterial communities (Fig. 6g). These
results indicate that the composition of microbial com-
munities is associated with plant productivity (Fig. 6f–j).
Remotely sensed vegetation cover weakly but signifi-
cantly predicted fungal diversity, measured as OTU rich-
ness (Fig. 6h), but not inverse Simpson diversity (not
shown). Remotely sensed vegetation cover also weakly
but significantly predicted bacterial diversity, measured
as inverse Simpson diversity (Fig. 6j), but not as OTU
richness (Fig. 6i).

Predicting belowground processes and attributes from leaf
chemistry and functional group composition

BioDIV.—In the BioDIV experiment, directly measured
or remotely sensed functional traits showed relatively
few associations with belowground properties, in con-
trast with the strong and consistent associations between
total aboveground inputs and belowground properties
(Fig. 5; Appendix S2: Table S3). However, some rela-
tionships were still found. In BioDIV, net nitrogen min-
eralization rates were positively associated with directly
measured LMA, foliar nitrogen concentration, and
foliar concentration of cell solubles—measured at the
leaf level—but negatively associated with foliar cellulose
and hemicellulose concentration. Net nitrogen mineral-
ization rates were also predicted by remotely sensed
LMA and foliar concentration of cell solubles, cellulose
and hemicellulose, although remotely sensed nitrogen
did not show a significant relationship. Cumulative soil
respiration was positively associated with directly mea-
sured foliar cellulose and hemicellulose concentration
and negatively associated with cell soluble concentra-
tion. Microbial biomass carbon was negatively associ-
ated with LMA and cell soluble concentration—
measured at the leaf level or remotely sensed—and with
foliar nitrogen concentration and lignin concentration
measured at the leaf level. However, most of the mea-
sured belowground processes in BioDIV, including
oxidative enzyme activity, hydrolytic enzyme activity,
microbial biomass nitrogen and total soil carbon and
nitrogen concentration were not associated with any of
the functional traits measured at the leaf level. Some
remotely sensed traits were negatively associated with
soil carbon and nitrogen concentration, including foliar
nitrogen and lignin concentration, and remotely sensed
foliar hemicellulose concentration was significantly but
weakly associated with soil carbon concentration. In
general, however, functional traits were not strong or
consistent predictors of belowground processes in the
BioDIV experiment.
Consistent with these findings, phylogenetic-

functional group proportion or biomass explained rela-
tively few belowground processes in BioDIV (Fig. 5;
Appendix S2: Table S3). Dicot proportion was nega-
tively associated with microbial biomass carbon and
nitrogen and cumulative respiration, while monocot and
C4 grass proportion were positively associated with

(FIG. 4. Continued)
and plant diversity (Wood River) from airborne remotely sensed (RS) imagery. In the BioDIV experiment, in situ measured biomass
was accurately predicted from AVIRIS NG spectroscopic imagery using either a partial least squares regression (PLSR) model (a)
or the vegetation cover model reported in Wang et al. (2019) (b). In the Wood River experiment, biomass was predicted from AISA
Kestrel spectroscopic imagery using PLSR (at the 6-m2 subplot scale) (c). Airborne data also predicted phylogenetic-functional
group composition in the Wood River experiment—shown here for C4 (d), monocot (e) and dicot (f) proportions—and functional
traits, including foliar nitrogen (g), cellulose (h) and lignin (i) concentrations. Both cross-validation (CV, gray circles) and
independent-validation (IV, black circles) % root mean square error (RMSE) and R2 are shown for PLSR models. In (j–l), remotely
sensed spectral diversity—the mean of the vector-normalized spectral distances among pixels within a plot—predicts measured spe-
cies richness, phylogenetic species richness (PSR) and abundance-weighted functional diversity [FD(qDTM)] (at the 3600-m2 plot
scale).
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microbial biomass carbon and negatively associated with
net nitrogen mineralization rate. Biomass of these
phylogenetic-functional groups showed trends that were
similar to both proportion and total biomass relation-
ships with soil attributes. Monocot and C4 grass bio-
mass positively predicted hydrolytic enzyme activity,
microbial biomass carbon and nitrogen, cumulative res-
piration rate and soil carbon, and negatively predicted
net nitrogen mineralization rate, similar to total above-
ground biomass (Appendix S2: Table S3). Forb biomass
strongly predicted microbial biomass nitrogen (but not
microbial biomass carbon), and net nitrogen mineraliza-
tion rate. C3 grass and forb biomass also weakly pre-
dicted soil carbon concentration (Appendix S2:
Table S3).

Wood River.—In contrast with BioDIV, at the Wood
River site, foliar and remotely sensed plant functional
traits were strongly and consistently associated with all

belowground processes and attributes, summarized in
Fig. 5 and the strength of the regression coefficients
were very similar (Appendix S2: Table S3). Specifically,
both leaf-level and remotely sensed foliar nitrogen
(Fig. 6k–o) were negatively associated with oxidative
enzyme activity and positively associated with hydrolytic
enzyme activity, microbial biomass carbon and nitrogen,
net nitrogen mineralization rate and soil nitrogen and
carbon, as were leaf-level and remotely sensed lignin, cell
soluble concentration and LMA (Appendix S2:
Table S3). Both leaf-level and remotely sensed foliar cel-
lulose (Fig. 6p–t) were positively associated with oxida-
tive enzyme activity and negatively associated with
microbial biomass carbon and nitrogen, net nitrogen
mineralization rate and soil nitrogen and carbon concen-
trations, as were leaf-level and remotely sensed hemicel-
lulose concentration (Appendix S2: Table S3).
The sign of these relationships was largely mirrored by

phylogenetic-functional group proportion. Monocot

FIG. 5. Belowground processes tended to be predicted by in situ or remotely sensed measures of biomass (including vegetation
cover) in BioDIV but by in situ or remotely sensed measures of foliar function and chemical composition in Wood River. Shown
are correlation coefficients (r values) at the plot level (BioDIV) or subplot level (Wood River) between remotely sensed (RS) traits,
directly measured leaf traits calculated as community weighted means, or functional group composition (proportion or biomass)
and soil processes, including oxidative enzyme activity (nmol�g−1�h−1), hydrolytic enzyme activity (nmol�g−1�h−1), microbial biomass
carbon (mg C�[g soil]−1), nitrogen net mineralization rate (mg N�[g soil]−1�d−1), cumulative respiration rate (mg CO2-C�[g soil−1

�d−1]), and soil carbon and nitrogen concentrations (%). Shading indicates that the correlation is significant at P < 0.05 or if bolded
at P < 0.001. Blue shading indicates the correlation is positive, pale red indicates the correlation is negative. No shading indicates
that we found no relationship between the variables, and blank squares indicate no data.
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proportion—which is strongly negatively associated with
remotely sensed foliar nitrogen (Fig. 6z) and positively
associated with cellulose concentration (Fig. 6aa)—was
positively associated with oxidative enzyme activity and
negatively associated with hydrolytic enzyme activity,
microbial biomass carbon, net nitrogen mineralization
rate (Fig. 6p–x), and soil carbon (Appendix S2:
Table S3). C4 grass proportion showed these same pat-
terns although C3 grass proportion showed weakly con-
trasting patterns or no relationship at all (Fig. 5).
Specifically, C3 grass proportion was positively associ-
ated with microbial biomass carbon and nitrogen as well
as soil carbon and nitrogen concentration, but not any
of the other soil processes. Dicot proportion—which is
strongly associated with remotely sensed nitrogen con-
centration (Fig. 6ac) and negatively associated with cel-
lulose concentration—was negatively associated with
oxidative enzyme activity, and positively associated with
hydrolytic enzyme activity, microbial biomass carbon,
net nitrogen mineralization rate (Fig. 6ad). The propor-
tion of variation explained in any of these plant func-
tional trait–belowground process relationships was
relatively low, ranging from approximately 5% to 15%.
However, the consistency in the associations between
soil properties and directly measured plant chemical
traits, remotely sensed chemical traits or directly mea-
sured and remotely sensed phylogenetic-functional
groups is striking in the Wood River system (Fig. 5). We
were able to predict soil properties from any of the ways
that we measured vegetation quality, from plant func-
tional traits to phylogenetic-functional group propor-
tions, measured directly or remotely sensed (Fig. 6K–X,
Appendix S2: Table S3).

Structural equation models

Our SEM results confirm the hypotheses illustrated in
our conceptual models (Fig. 1) and are consistent with
the bivariate relationships in Figs. 5, 6. The analysis syn-
thesizes these findings and shows that vegetation quan-
tity and quality influenced belowground attributes and
processes and their interrelationship in the BioDIV and
Wood River experiments differently. In BioDIV, the
quantity of aboveground inputs to the soil, measured as
aboveground biomass, was an important positive predic-
tor of the activity and abundance of soil microbes, while
vegetation quality, measured as the carbon to nitrogen
ratio in aboveground vegetation, was not (Fig. 7a). The
quantity of aboveground inputs also was positively asso-
ciated with soil nutrient availability, measured as net
nitrogen mineralization rate (Nmin), while vegetation
quality was not.
In contrast, in the Wood River system, vegetation

quality, measured as the carbon to nitrogen ratio of
aboveground vegetation, was strongly and negatively
associated with soil nutrient availability, measured as net
nitrogen mineralization rate (Fig. 7b), while the quantity
of aboveground inputs to the soil, measured as

aboveground biomass, was not. In addition, in this sys-
tem both vegetation quality and vegetation quantity,
measured as aboveground biomass, was negatively asso-
ciated with the abundance of microbes in the soil, such
that greater amounts of vegetation nitrogen relative to
carbon increased microbial biomass.

DISCUSSION

Belowground biodiversity and processes are critical to
essential ecosystem functions such as soil fertility and
carbon sequestration that maintain the Earth’s life sup-
port systems. Yet they are difficult to study across large
spatial scales. Here we demonstrate the potential for
using spectroscopic imagery across broad spatial extents
to predict belowground properties and functions in
grassland systems that varied in diversity and productiv-
ity. In a relatively low productivity system, with low soil
carbon and nitrogen concentrations (BioDIV), the sup-
ply of substrates and therefore total vegetation biomass
limited microorganisms and their functions in the soil,
influencing microbial community composition and
nutrient dynamics. In a more productive system with
higher soil carbon and nitrogen concentrations (Wood
River), where substrate supply was less limiting to soil
microbes, the chemical composition of vegetation had a
predominant influence on microbial processes and nutri-
ent dynamics.
The IPBES 2018 Americas Assessment documented

that 35% of grassland systems in the Americas have been
converted to pasture or grazing lands and only a small
fraction of intact grassland systems remains (Cavender-
Bares et al. 2018). In North America alone, a large frac-
tion of grasslands has been altered by overgrazing and
agricultural conversion, reducing their biodiversity and
ecosystem functions relative to pre-European settlement
(Bultena et al. 1996, Jones 2000, Sala et al. 2013, Wick
et al. 2016). The range of grassland systems—from those
more heavily altered by humans to those that are rela-
tively intact—has been simulated to some extent by these
diversity experiments in grassland systems, both at the
low end of a diversity–productivity gradient (BioDIV in
central Minnesota) and toward the higher end of a diver-
sity–productivity gradient (Wood River in central
Nebraska).
In such experiments, we show that remotely sensed

variables of prairie grassland ecosystems related to both
the quantity and quality of aboveground inputs pre-
dicted belowground processes. Airborne spectroscopic
data at 0.9 m or 1 m resolution predicted aboveground
biomass, foliar chemistry and function, and where vege-
tation cover was high, phylogenetic-functional group
composition. These aboveground metrics, in turn, pre-
dicted belowground microbial and soil processes, as well
as nutrient availability in both systems. However, the rel-
ative importance of the total quantity of vegetation bio-
mass—or total energy inputs—compared with the
functional and chemical quality of these inputs in
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FIG. 6. In the BioDIV experiment, remotely sensed vegetation cover predicted (a) cumulative respiration rate, (b) hydrolytic
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driving microbial communities and belowground pro-
cesses varied between the two experimental systems. In
BioDIV, the quantity of vegetation inputs to the soil was

the most critical predictor for microbial abundance and
soil processes, while the quality of inputs was of sec-
ondary importance. The greater importance of quantity

(FIG. 6. Continued)
enzyme activity, (c) microbial biomass carbon, (d) nitrogen net mineralization rate, (e) soil carbon, (f) the first NMDS1 axis of the
fungal community data and (g) the first NMDS1 axis of the bacterial community data as well as (h) fungal operational taxonomic
unit (OTU) richness but not (i) bacterial OTU richness. (j) Bacterial diversity measured by the inverse Simpson metric is weakly pre-
dicted. Data are from 2015, N = 119. In the Wood River experiment, remotely sensed vegetation nitrogen concentration in the vege-
tation (RS Nitrogen) predicted (k) oxidative enzyme activity, (l) hydrolytic enzyme activity, (m) microbial biomass carbon, (n) net
nitrogen mineralization rate and (o) soil carbon. Remotely sensed (RS) cellulose concentration and RS monocot proportion posi-
tively predicted (p, u) oxidative enzyme activity, and negatively predicted (q, v) hydrolytic enzyme activity, (r, w) microbial biomass
carbon, (s, x) net nitrogen mineralization rate and (t, y) soil carbon. RS monocot proportion was negatively associated with (z)
foliar nitrogen (%) and positively associated with (AA) foliar cellulose concentration (%), as was (AB) C4 grass proportion, while
dicot proportion was positively associated with (AC) foliar nitrogen and (AD) soil net nitrogen mineralization rate.

a)

b)

FIG. 7. Structural equation models reveal the relative importance of aboveground quantity and quality of vegetation inputs for
belowground microbial processes and soil nutrient availability and their interrelations in the BioDIV (chi-squared = 0.30, df = 1,
P = 0.59) (a) and Wood River (chi-squared = 0.02, df = 1, P = 0.89) (b) experiments. In each model, the latent variable constructs
(ovals) are represented by measured variables (rectangles). Vegetation quantity and quality are represented by aboveground biomass
(“Biomass”) and vegetation carbon to nitrogen ratio (“CN ratio”), respectively. The latent construct of belowground microbial com-
munity functions (“BG community”) is represented by microbial biomass carbon (“Microbial biomass”), while the soil nutrient
availability is represented by net nitrogen mineralization rate (“Nmineralization”). Blue arrows indicate significant positive relation-
ships. Red arrows indicate significant negative relationships. Dashed lines non-significant relationships. Coefficients and standard-
ized coefficients (in brackets, one unit change in the predictor variable causes the amount of one standardized coefficient change in
the dependent variable) are given next to the arrows. Predictor variables were converted the following way: one unit of biomass in
the model equals measured dry plant biomass (g/m2)/100, one unit net nitrogen mineralization rate in the model equals (1 + mea-
sured N (mg)�[g soil]−1�d−1) × 100, and one unit microbial biomass carbon in the model equals for BioDIV (measured microbial
biomass C�[g soil]−1) × 100 and for Wood River (1 + measured microbial biomass C�[g soil]−1) × 10.
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over quality of aboveground inputs likely occurred
because of high variation in productivity and the very
low productivity associated with low diversity levels in
BioDIV. Weeding to maintain the low diversity treat-
ments greatly reduces plant cover causing the low diver-
sity plots to have very low productivity compared with
most grasslands, even compared with heavily influenced
grasslands (Knapp et al. 2001, Hui and Jackson 2006,
Fay et al. 2015). In Wood River, which had a higher
plant density resembling more typical prairie, the quality
of vegetation inputs was the most important predictor
for microbial abundance and soil processes.
In grassland systems, detecting taxonomic composi-

tion and diversity levels at pixel sizes of ˜1 m or greater
remains complicated due to a mismatch between pixel
size and the size of individual plants (Wang et al. 2018,
Gholizadeh et al. 2018). While plant biodiversity was
readily predicted by spectral diversity from airborne
imagery at Wood River (Fig. 4j–l, see also Gholizadeh
et al. 2019), accurate detection in BioDIV was possible
only with very high spatial resolution (<10 cm) (Wang
et al. 2018) using a ground-based robotic tram (Gamon
et al. 2006). Using a different metric of spectral diversity
—the mean distance between vector-normalized spectra
among pixels—we again found at Wood River that spec-
tral diversity predicts plant diversity, including species
richness, PSR and leaf-level functional diversity
(qDTM) at the plot scale but not at the subplot scale.
Remotely sensed spectral diversity was not significantly
associated with remotely sensed biomass at the plot scale
(Appendix S1: Fig. S5B), and directly measured metrics
of plant diversity were only weakly associated at this
scale (Fig. 3g–i). At the subplot scale these relationships
were significant—both directly measured (Fig. 3d–f)
and remotely sensed (Appendix S1: Fig. S5c)—but spec-
tral diversity explained a low proportion of the variance
in biomass. In BioDIV, where the relationships between
measures of plant diversity and productivity are stron-
ger, remotely sensed spectral diversity did not predict
metrics of plant diversity at 1 m resolution. Neverthe-
less, Schweiger et al. (2018) found that spectral diversity,
measured both at the leaf level and remotely using 1 cm
tram data, accurately predicted plant functional diver-
sity and phylogenetic diversity in BioDIV, and that spec-
tral diversity strongly predicted biomass. These results
highlighted the need for close attention to spatial scale,
both in terms of grain size of measurement and consid-
eration of the spatial extent at which relationships
between biodiversity and ecosystem functions can be
observed (Gamon et al. 2020).
The ability to remotely map functional traits and

recover the same relationships with soil processes as mea-
sured trait values demonstrates promise for current and
forthcoming satellite missions and airborne detection
efforts of a range of ecosystem processes through map-
ping of functional traits with spectroscopy. Where canopy
conditions permit—which we hypothesized to depend
on high vegetation cover—mapping of phylogenetic-

functional groups is also likely to be predictive of below-
ground processes. Applying this approach to other sys-
tems will require an understanding of the extent to which
substrate quantity limits microbial processes and the rela-
tive importance of vegetation quality in driving below-
ground dynamics. Vegetation cover and biomass can be
remotely sensed with high accuracy using imaging spec-
troscopy and have the potential to inform where on the
diversity–productivity continuum an ecosystem resides,
and therefore whether total substrates are a limiting fac-
tor or whether chemical and phylogenetic-functional
groups are likely to be more predictive of belowground
processes and attributes. Targeted field campaigns to test
the expected relationships between vegetation inputs and
belowground processes, informed by cover, biomass and
trait maps, will be important.

Relationships between vegetation cover, productivity and
belowground attributes and processes

Total organic matter inputs to soils are likely to be
much lower in BioDIV than in Wood River, for several
reasons, and therefore likely to limit soil microbes at Bio-
DIV (Zak et al. 1994). In BioDIV, the diversity treatments
(1–16 species/plot, drawn from a pool of 32) created 16-
fold variation in biomass (25–283 g/m2 in 2015) and
therefore in the quantity of substrate inputs to the soil.
Even the most diverse and productive plots have modest
productivity relative to the original tall grass prairie of
the region. At Wood River, with higher species rich-
ness/plot and a total species pool of c. 80 species, biomass
ranged from 285 to 1,079 g/m2 (in 2017), such that the
least productive communities at this site are comparable
with the most productive communities in BioDIV. Above-
ground biomass approximates the aboveground produc-
tivity in these herbaceous systems, where all aboveground
biomass senesces each year; aboveground and below-
ground biomass are tightly correlated in BioDIV (For-
nara and Tilman 2008, Appendix S1: Fig. S3) and
presumably in Wood River; and root production is likely
to be proportional to root biomass. Consequently, total
biomass production—the primary source of organic mat-
ter inputs to soil—must be lower in BioDIV than in
Wood River. Annual to semi-annual burning further
reduces organic inputs to soils in BioDIV; Wood River is
less frequently burned (approximately every three years).
While root turnover and rhizodeposition provide an
important source of substrate inputs to the soil in both
systems, aboveground litter inputs are likely to have a
greater contribution to total organic matter inputs to soils
at Wood River, given the more frequent burning at Bio-
DIV than at Wood River. In addition, higher productivity
at Wood River was likely to have arisen in part from a
warmer climate, finer-textured soils with deposits from
the Platte River, and therefore higher soil fertility.
Lower productivity at BioDIV for reasons mentioned

above are likely to lead to stronger microbial substrate
limitations there than at Wood River. Previous studies
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have documented that, when substrate quantity is limit-
ing, it is positively related to microbial biomass and fun-
gal abundance (Wardle 1992, Zak et al. 1994, Cleveland
and Liptzin 2007, Whitaker et al. 2014) and to soil car-
bon, which has been previously documented in BioDIV
(Fornara and Tilman 2008, Yang et al. 2019). Higher
microbial biomass and soil carbon are therefore
expected to be associated with high soil respiration
(Whitaker et al. 2014). In systems in which energy inputs
primarily limit microbial processes, the nutrient compo-
sition of soil inputs is secondary (Hättenschwiler and
Jørgensen 2010, Whitaker et al. 2014, Cline et al. 2018).
A similar pattern appears to be the case in BioDIV,
where chemical composition of the above ground vegeta-
tion is relatively less important and less predictive than
total energy inputs to microbial abundance, composi-
tion, activity and the soil processes they drive (Zak et al.
2003).

Relationships between vegetation chemistry, foliar
functional traits, phylogenetic-functional groups and

belowground attributes and processes

Phylogenetic-functional group composition—associ-
ated with changes in vegetation chemistry and root
chemistry—was a stronger influence on microbial com-
position, biomass and activity in Wood River than in
BioDIV. In the Wood River system, remotely sensed
foliar chemistry and plant functional-phylogenetic group
composition, as well as in situ measures of these same
traits and phylogenetic-functional group proportion,
were stronger predictors of belowground enzyme activ-
ity, net nitrogen mineralization rates, microbial biomass,
and soil carbon and nitrogen compared with BioDIV.
Nevertheless, the proportion of the major phylogenetic
lineages—monocots and dicots—as well as individual
functional groups, particularly C4 grasses, to varying
extents, remained predictors of microbial biomass car-
bon and nitrogen, cumulative soil respiration and net
nitrogen mineralization rates in BioDIV, as did some
aspects of chemical composition, consistent with past
studies at BioDIV and the nearby BioCON experiment
(Dijkstra et al. 2006, Fornara et al. 2009, Mueller et al.
2013, Wei et al. 2019).
In Wood River, oxidative enzyme activity was nega-

tively predicted by leaf level and remotely sensed LMA,
foliar nitrogen and lignin concentration, and foliar cell
soluble concentration and positively predicted by leaf
level and remotely sensed foliar cellulose and hemicellu-
lose concentration. In contrast, hydrolytic enzyme activ-
ity, microbial biomass carbon and nitrogen, and soil
carbon were positively predicted by foliar nitrogen, cell
solubles, lignin, and LMA. Foliar nitrogen and lignin
concentration are highly correlated in both of these grass-
land systems, such that teasing apart their independent
relationships with other factors is problematic. Nitrogen,
both when applied externally and in leaf litter, has been
shown to inhibit oxidative enzyme activity (Fenn et al.

1981, Carreiro et al. 2000, DeForest et al. 2004, Zak et al.
2008, Edwards et al. 2011, Hobbie et al. 2012), which may
explain why these enzymes showed reduced activity in
plots with higher foliar nitrogen, despite higher lignin
inputs. Greater soil carbon is expected to support higher
microbial biomass (Wardle 1992, Zak et al. 1994, Cleve-
land and Liptzin 2007), which helps to explain the higher
hydrolytic enzyme activity in plots with higher foliar
nitrogen (Whitaker et al. 2014).
Nitrogen in substrates can control the composition

and activity of microbial communities and the processes
they drive (Hättenschwiler and Jørgensen 2010). If litter-
feeding organisms and decomposer communities are lim-
ited by the relative availability of nitrogen, their activity
is expected to increase with substrates higher in N. We
found that both remotely sensed foliar nitrogen concen-
tration, as well as the proportion of legumes, positively
predicted microbial biomass carbon and nitrogen and
their hydrolytic enzyme activity and nitrogen net miner-
alization rates, consistent with results from BioCON,
adjacent to BioDIV (Dijkstra et al. 2006, Mueller et al.
2013, Wei et al. 2019). Similarly, the proportion of C4
grasses and of grasses, in general—which have low tissue
N concentrations and high cellulose and hemicellulose
concentrations—was a negative predictor of these same
processes. These results demonstrated that remotely
sensed traits mapped at landscape scales, as well as
phylogenetic-functional group composition, can be pre-
dictive of belowground processes and attributes. How-
ever, in situ characterization of the systems is necessary
to understand how vegetation inputs drive soil processes,
as well as to determine the extent to which traits or
phylogenetic-functional groups can be robustly mapped.

Relevance of phylogenetic-functional groups for predicting
belowground processes and attributes using imaging

spectroscopy

Our results showed that airborne data can provide
critical information relevant to belowground ecosystem
processes, both in terms of quantity and quality of
inputs to soil that are not easily obtained from the
ground. Chemical sampling of vegetation is time-
consuming and costly, particularly over large spatial
extents. Airborne information, coupled with increasingly
available vegetation trait and biomass models, will even-
tually provide this kind of information with ultimately
lower cost and less time. However, our work shows that
modeling how the quality and quantity of inputs influ-
ence belowground processes requires characterizing sys-
tems in advance. The relative importance of total
aboveground inputs to soil processes compared with the
chemical composition of those inputs is expected to vary
along the diversity–productivity gradient, given that car-
bon is not likely to be limiting at the high productivity
end of this gradient. Understanding where a given
ecosystem falls along the plant diversity–productivity
gradient is likely to be critical for determining whether
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remotely sensed measures of productivity or vegetation
chemistry are most predictive of belowground microbial
processes and soil nutrients.
Based on our results from two contrasting experimen-

tal grassland systems, we can anticipate that below-
ground processes of overgrazed and degraded grasslands
that are low in biodiversity and productivity may be dri-
ven by input quantity. In contrast, belowground pro-
cesses in less disturbed prairie systems may be more
driven by vegetation composition and quality. If these
relationships can be established generally at large spatial
scales across grassland systems, we will be in a position
to advance our understanding of belowground ecosys-
tem processes in these globally threatened ecosystems,
facing land-use change, increasing grazing pressure and
a range of other anthropogenic factors.
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