310 research outputs found

    Room temperature Giant Spin-dependent Photoconductivity in dilute nitride semiconductors

    Full text link
    By combining optical spin injection techniques with transport spectroscopy tools, we demonstrate a spin-photodetector allowing for the electrical measurement and active filtering of conduction band electron spin at room temperature in a non-magnetic GaAsN semiconductor structure. By switching the polarization of the incident light from linear to circular, we observe a Giant Spin-dependent Photoconductivity (GSP) reaching up to 40 % without the need of an external magnetic field. We show that the GSP is due to a very efficient spin filtering effect of conduction band electrons on Nitrogen-induced Ga self-interstitial deep paramagnetic centers.Comment: 4 pages, 3 figure

    Monitoring of river contamination derived from acid mine drainage using airborne imaging spectroscopy (HyMap data, South-West Spain)

    Get PDF
    Imaging spectroscopy is used in this work as an essential mapping tool to monitor changes in contaminated river sediments. Multidate hyperspectral image data (HyMap) are utilized to identify spatial mineral patterns, to detect temporal changes in mineralogy and to link these changes with geochemical processes and short-term climate characteristics. River sediments contaminated by acid mine drainage are covered by crusts with variably hydrated iron sulphate. The mineralogy of the crusts and the grain size of the underlying fluvial sediments overlap. The spectra used to build up maps from HyMap data are diagnosed mineralogically with archive spectral libraries from pyrite oxidation minerals from well-known sequences of minerals. The maps compiled from hyperspectral imagery display generalized oxidation shown by the coatings over river sediments following warm and dry periods with low water level. After the wet periods, the area covered by oxidized mineralogical phases recedes in favour of hydrated sulphate. The iteration of image processing algorithms and the mineralogical and potential contamination in a geological context are described. Change detection of the mineral crusts on the river sediments by mapping using hyperspectral remote sensing data may thus enable a quantitative and qualitative environmental evaluation by the regulators

    Improving the reliability of material databases using multiscale approaches

    Full text link
    This article addresses the propagation of constitutive uncertainties between scales occurring in the multiscale modelling of fibre-reinforced composites. The amplification of such uncertainties through upward or downward transitions by a homogenisation model is emphasized and exemplified with the Mori-Tanaka model. In particular, the sensitivity to data uncertainty in the inverse determination of constituent parameters based on downward transitions is stressed on an example. Then a database improvement method, which exploits simultaneously the available information on constitutive uncertainties at all scales instead of just propagating those associated with one scale, is presented and shown to yield substantial reductions in uncertainty for both the constitutive parameters and the response of structures. The latter finding is demonstrated on two examples of structures, with significant gains in confidence obtained on both

    Production of negative ions on graphite surface in Hâ‚‚/Dâ‚‚ plasmas: experiments and SRIM calculations

    Get PDF
    In previous works, surface-produced negative-ion distribution-functions have been measured in H2 and D2 plasmas using graphite surfaces (highly oriented pyrolitic graphite). In the present paper, we use the srim software to interpret the measured negative-ion distribution-functions. For this purpose, the distribution-functions of backscattered and sputtered atoms arising due to the impact of hydrogen ions on a-CH and a-CD surfaces are calculated. The srim calculations confirm the experimental deduction that backscattering and sputtering are the mechanisms of the origin of the creation of negative ions at the surface. It is shown that the srim calculations compare well with the experiments regarding the maximum energy of the negative ions and reproduce the experimentally observed isotopic effect. A discrepancy between calculations and measurements is found concerning the yields for backscattering and sputtering. An explanation is proposed based on a study of the emitted-particle angular-distributions as calculated by srim

    reliability and applicability of modern numerical analyses of dams

    Get PDF
    Relevance. At present the application of numerical analyses to real problems of dam engineering has suffered at times from the gaps between the specialists of mathematical modeling and dam engineers and managers. The first group usually includes information system specialists because they are able to develop the computer models to their full potential. The professionals belonging to the second group often prefer to revert to traditional methods of calculation and empirical methods based on their proven experience. The aim of the work - based on recommendations of International workshops seminars, organized by the ICOLD Committee on Computational Aspects of Dam Analysis and Design, help dam engineers to interact with mathematical modeling specialists and to work with them without language barriers or gaps in knowledge. In this relation the assessment of reliability and applicability of numerical analyses of dams allows engineers to develop the optimal dam design. Methods. Assessment of the reliability of numerical methods of analyses of dam behavior was based on data of 10 International benchmark-workshop seminars, organized by the Committee in Italy (1991 and 1992), France (1994 and 2009), Spain (1996), USA (1999), Austria (2001), Romania (2003), China (2005), Russia (2007), in which specialists of these countries also took part

    A new phase in the production of quality-controlled sea level data

    Get PDF
    Sea level is an essential climate variable (ECV) that has a direct effect on many people through inundations of coastal areas, and it is also a clear indicator of climate changes due to external forcing factors and internal climate variability. Regional patterns of sea level change inform us on ocean circulation variations in response to natural climate modes such as El Niño and the Pacific Decadal Oscillation, and anthropogenic forcing. Comparing numerical climate models to a consistent set of observations enables us to assess the performance of these models and help us to understand and predict these phenomena, and thereby alleviate some of the environmental conditions associated with them. All such studies rely on the existence of long-term consistent high-accuracy datasets of sea level. The Climate Change Initiative (CCI) of the European Space Agency was established in 2010 to provide improved time series of some ECVs, including sea level, with the purpose of providing such data openly to all to enable the widest possible utilisation of such data. Now in its second phase, the Sea Level CCI project (SL_cci) merges data from nine different altimeter missions in a clear, consistent and well-documented manner, selecting the most appropriate satellite orbits and geophysical corrections in order to further reduce the error budget. This paper summarises the corrections required, the provenance of corrections and the evaluation of options that have been adopted for the recently released v2.0 dataset (https://doi.org/10.5270/esa-sea_level_cci-1993_2015-v_2.0-201612). This information enables scientists and other users to clearly understand which corrections have been applied and their effects on the sea level dataset. The overall result of these changes is that the rate of rise of global mean sea level (GMSL) still equates to ∼ 3.2 mm yr−1 during 1992–2015, but there is now greater confidence in this result as the errors associated with several of the corrections have been reduced. Compared with v1.1 of the SL_cci dataset, the new rate of change is 0.2 mm yr−1 less during 1993 to 2001 and 0.2 mm yr−1 higher during 2002 to 2014. Application of new correction models brought a reduction of altimeter crossover variances for most corrections
    • …
    corecore