3,092 research outputs found

    Short oestrous cycles in sheep during anoestrus involve defects in progesterone biosynthesis and luteal neovascularisation

    Get PDF
    Anoestrous ewes can be induced to ovulate by the socio-sexual, 'ram effect'. However, in some ewes the induced ovulation is followed by an abnormally short luteal phase causing a so called, "short cycle". The defect responsible for this luteal dysfunction has not been identified. In this experiment we investigated ovarian and uterine factors implicated in male-induced short cycles in anoestrus ewes using a combined endocrine and molecular strategy. Prior to ovulation, we were able to detect a moderate loss of thecal expression of steroid acute regulatory protein (STAR) in ewes that had not received progesterone priming (which prevents short cycles). At and following ovulation we were able to identify significant loss of expression of genes coding key proteins involved in the biosynthesis of progesterone (STAR, CYP11A1, HSD3B) as well as genes coding proteins critical for vascular development during early luteal development (VEGFA, VEGFR2) suggesting dysfunction in at least two pathways critical for normal luteal function. Furthermore, these changes were associated with a significant reduction of progesterone production and luteal weight. Additionally, we cast doubt on the proposed uterine-mediated effect of prostaglandin F2α as a cause of short cycles by demonstrating both the dysregulation of luteal expression of the PGF receptor, which mediates the luteal effects of PGF2α, and by finding no significant changes in the circulating concentrations of PGFM, the principal metabolite of PGF2α in ewes with short cycles. This study is the first of its kind to examine concurrently, the endocrine and molecular events in the follicular and early luteal stages of the short cycle

    Xanthomonas campestris pv. campestris race 1 is the main causal agent of black rot of Brassicas in Southern Mozambique

    Get PDF
    Severe outbreaks of bacterial black rot caused by Xanthomonas campestris pv. campestris (Xcc) were observed in Brassica production fields of Southern Mozambique. The causal agent of the disease in the Mahotas and Chòkwé districts was identified and characterised. In total, 83 Xanthomonas-like strains were isolated from seed samples and leaves of cabbage and tronchuda cole with typical symptoms of the disease. Forty-six out of the 83 strains were found to be putative Xcc in at least one of the tests used: Classical biochemical assays, enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies, Biolog identification system, polymerase chain reaction (PCR) with specific primers and pathogenicity tests. The ELISA tests were positive for 43 strains. Biolog identified 43 strains as Xanthomonas, but only 32 as Xcc. PCR tests with primers targeting a fragment of the hrpF gene were positive for all 46 strains tested. Three strains were not pathogenic or weakly pathogenic and all other strains caused typical black rot symptoms in brassicas. Race type differentiation tests revealed the Xcc strains from Mozambique as members of race 1. The prevalence of this pathogenic race of the Xcc pathogen in Mozambique should be considered when black rot resistant cultivars are evaluated or introduced into the production regions of this country

    A novel method for evaluating the critical nucleus and the surface tension in systems with first order phase transition

    Full text link
    We introduce a novel method for calculating the size of the critical nucleus and the value of the surface tension in systems with first order phase transition. The method is based on classical nucleation theory, and it consists in studying the thermodynamics of a sphere of given radius embedded in a frozen metastable surrounding. The frozen configuration creates a pinning field on the surface of the free sphere. The pinning field forces the sphere to stay in the metastable phase as long as its size is smaller than the critical nucleus. We test our method in two first-order systems, both on a two-dimensional lattice: a system where the parameter tuning the transition is the magnetic field, and a second system where the tuning parameter is the temperature. In both cases the results are satisfying. Unlike previous techniques, our method does not require an infinite volume limit to compute the surface tension, and it therefore gives reliable estimates even by using relatively small systems. However, our method cannot be used at, or close to, the critical point, i.e. at coexistence, where the critical nucleus becomes infinitely large.Comment: 12 pages, 15 figure

    Risk of miscarriage following amniocentesis or chorionic villus sampling: systematic review of literature and updated meta-analysis

    Get PDF
    Objectives: To estimate the procedure-related risks of miscarriage after amniocentesis and trans-abdominal chorionic villus sampling (CVS) based on a systematic review of the literature and an updated meta-analysis. Methods: A search of MEDLINE, EMBASE, and The Cochrane Library was carried out to identify studies reporting complications following CVS or amniocentesis. The inclusion criteria for the systematic review were studies reporting results from large controlled studies and those reporting data for pregnancy loss prior to 24 weeks’ gestation. Study authors were contacted when required to identify additional necessary data. Data for cases that had invasive procedure and controls groups were inputted in contingency tables and risk of miscarriage was estimated for each study. Summary statistics based on a fixed and random effects model were calculated after taking into account the weighting for each study included in the systematic review. Procedure-related risk of miscarriage was estimated as a weighted risk difference from the summary statistics for cases and controls. A subgroup analyses according to the similarity risk levels in the invasive testing and control groups was performed. Heterogeneity was assessed using Cochrane’s Q and I2 statistic. Egger Bias was estimated to assess reporting bias in published studies. Summary statistics for procedure-related risk of miscarriage were graphically represented in Forest plots. Results: The electronic search from the databases yielded 2,943 potential citations, from which, we selected 20 controlled studies for inclusion in the systematic review to estimate the procedure-related risk of miscarriage from invasive procedures. There were a total of 580 miscarriages from 63,273 amniocentesis procedures with a weighted risk of pregnancy loss of 0.91% (95%CI: 0.73 to 1.09). In the control group, there were 1,726 miscarriages in 330,469 pregnancies with a loss rate of 0.58% (95CI%: 0.47 to 0.70). The weighted procedure-related risk of miscarriage was 0.30% (95%CI: 0.11 to 0.49, I2=70.1%). There were a total of 163 miscarriages from 13,011 CVS procedures with a risk of pregnancy loss of 1.39% (95%CI: 0.76 to 2.02). In the control group, there were 1,946 miscarriages in 232,680 pregnancies with a loss rate of 1.23% (95CI%: 0.86 to 1.59). The weighted procedure-related risk of miscarriage following CVS was 0.20% (95%CI: -0.12 to 0.52, I2=51.9%). However, when only studies with similar risk profiles between the intervention and control groups were considered, the procedure related risk for amniocentesis became 0.03% (95%CI -0.08 to 0.14, I2=0%) and for CVS -0.38 (95% CI -1.12 to 0.36, I2=0%). Conclusion: The procedure-related risks of miscarriage following amniocentesis and CVS are lower than currently quoted to women. The risk appears to be negligible when these interventions are compared to control groups of the same risk profile

    Forced Symmetry Breaking from SO(3) to SO(2) for Rotating Waves on the Sphere

    Full text link
    We consider a small SO(2)-equivariant perturbation of a reaction-diffusion system on the sphere, which is equivariant with respect to the group SO(3) of all rigid rotations. We consider a normally hyperbolic SO(3)-group orbit of a rotating wave on the sphere that persists to a normally hyperbolic SO(2)-invariant manifold M(ϵ)M(\epsilon). We investigate the effects of this forced symmetry breaking by studying the perturbed dynamics induced on M(ϵ)M(\epsilon) by the above reaction-diffusion system. We prove that depending on the frequency vectors of the rotating waves that form the relative equilibrium SO(3)u_{0}, these rotating waves will give SO(2)-orbits of rotating waves or SO(2)-orbits of modulated rotating waves (if some transversality conditions hold). The orbital stability of these solutions is established as well. Our main tools are the orbit space reduction, Poincare map and implicit function theorem

    Stability transitions for axisymmetric relative equilibria of Euclidean symmetric Hamiltonian systems

    Get PDF
    In the presence of noncompact symmetry, the stability of relative equilibria under momentum-preserving perturbations does not generally imply robust stability under momentum-changing perturbations. For axisymmetric relative equilibria of Hamiltonian systems with Euclidean symmetry, we investigate different mechanisms of stability: stability by energy-momentum confinement, KAM, and Nekhoroshev stability, and we explain the transitions between these. We apply our results to the Kirchhoff model for the motion of an axisymmetric underwater vehicle, and we numerically study dissipation induced instability of KAM stable relative equilibria for this system.Comment: Minor revisions. Typographical errors correcte

    Realizing a Deterministic Source of Multipartite-Entangled Photonic Qubits

    Full text link
    Sources of entangled electromagnetic radiation are a cornerstone in quantum information processing and offer unique opportunities for the study of quantum many-body physics in a controlled experimental setting. While multi-mode entangled states of radiation have been generated in various platforms, all previous experiments are either probabilistic or restricted to generate specific types of states with a moderate entanglement length. Here, we demonstrate the fully deterministic generation of purely photonic entangled states such as the cluster, GHZ, and W state by sequentially emitting microwave photons from a controlled auxiliary system into a waveguide. We tomographically reconstruct the entire quantum many-body state for up to N=4N=4 photonic modes and infer the quantum state for even larger NN from process tomography. We estimate that localizable entanglement persists over a distance of approximately ten photonic qubits, outperforming any previous deterministic scheme

    Texture and shape of two-dimensional domains of nematic liquid crystal

    Get PDF
    We present a generalized approach to compute the shape and internal structure of two-dimensional nematic domains. By using conformal mappings, we are able to compute the director field for a given domain shape that we choose from a rich class, which includes drops with large and small aspect ratios, and sharp domain tips as well as smooth ones. Results are assembled in a phase diagram that for given domain size, surface tension, anchoring strength, and elastic constant shows the transitions from a homogeneous to a bipolar director field, from circular to elongated droplets, and from sharp to smooth domain tips. We find a previously unaccounted regime, where the drop is nearly circular, the director field bipolar and the tip rounded. We also find that bicircular director fields, with foci that lie outside the domain, provide a remarkably accurate description of the optimal director field for a large range of values of the various shape parameters.Comment: 12 pages, 10 figure
    corecore