We introduce a novel method for calculating the size of the critical nucleus
and the value of the surface tension in systems with first order phase
transition. The method is based on classical nucleation theory, and it consists
in studying the thermodynamics of a sphere of given radius embedded in a frozen
metastable surrounding. The frozen configuration creates a pinning field on the
surface of the free sphere. The pinning field forces the sphere to stay in the
metastable phase as long as its size is smaller than the critical nucleus. We
test our method in two first-order systems, both on a two-dimensional lattice:
a system where the parameter tuning the transition is the magnetic field, and a
second system where the tuning parameter is the temperature. In both cases the
results are satisfying. Unlike previous techniques, our method does not require
an infinite volume limit to compute the surface tension, and it therefore gives
reliable estimates even by using relatively small systems. However, our method
cannot be used at, or close to, the critical point, i.e. at coexistence, where
the critical nucleus becomes infinitely large.Comment: 12 pages, 15 figure