779 research outputs found

    Chromosome Oscillations in Mitosis

    Full text link
    Successful cell division requires a tight regulation of chromosome motion via the activity of molecular motors. Many of the key players at the origin of the forces generating the movement have been identified, but their spatial and temporal organization remains elusive. The protein complex Kinetochore on the chromosome associates with microtubules emanating from one of the spindle poles and drives the chromosome toward the pole. Chromokinesin motors on the chromosome arms also interact with microtubules, ejecting the chromosome away from the pole. In animal cells, a monooriented chromosome (associated to a single pole) periodically switches between phases of poleward and away from the pole movement[, a behavior tentatively explained so far by the existence of a complex switching mechanism within the kinetochore itself. Here we show that the interplay between the morphology of the mitotic spindle and the collective kinetics of chromokinesins can account for the highly non-linear periodic chromosome motion. Our analysis provides a natural explanation for the origin of chromosome directional instability and for the mechanism by which chromosomes feel their position in space.Comment: http://hogarth.pct.espci.fr/~pierre

    Higher order effects in the 16O(d,p)17O^{16}O(d,p)^{17}O and 16O(d,n)17F^{16}O(d,n)^{17}F transfer reactions

    Get PDF
    Full Coupled Channels Calculations were performed for the 16O(d,n)17F^{16}O(d,n)^{17}F and 16O(d,p)17O^{16}O(d,p)^{17}O transfer reactions at several deuteron incident energies from Elab=2.29E_{lab}=2.29 MeV up to 3.27 MeV. A strong polarization effect between the entrance channel and the transfer channels 16O(d,n)17F(1/2+,0.495)^{16}O(d,n)^{17}F(1/2^{+},0.495) and 16O(d,p)17O(1/2+,0.87)^{16}O(d,p)^{17}O(1/2^{+},0.87) was observed. This polarization effect had to be taken into account in order to obtain realistic spectroscopic factors from these reactions.Comment: 15 papes, 13 figures, accepted for publication in Phys. Rev.

    Force balance and membrane shedding at the Red Blood Cell surface

    Full text link
    During the aging of the red-blood cell, or under conditions of extreme echinocytosis, membrane is shed from the cell plasma membrane in the form of nano-vesicles. We propose that this process is the result of the self-adaptation of the membrane surface area to the elastic stress imposed by the spectrin cytoskeleton, via the local buckling of membrane under increasing cytoskeleton stiffness. This model introduces the concept of force balance as a regulatory process at the cell membrane, and quantitatively reproduces the rate of area loss in aging red-blood cells.Comment: 4 pages, 3 figure

    BPS Configurations in Smectics

    Full text link
    It is typical in smectic liquid crystals to describe elastic deformations with a linear theory when the elastic strain is small. We extend the recent, exact solution of Brener and Marchenko to more general one-dimensional deformations, including multiple edge dislocations by relying on the Bogomol'nyi, Prasad and Sommerfield (BPS) decomposition. We introduce an approximation for the deformation profile far from a spherical inclusion and find an enhanced attractive interaction at long distances due to the nonlinear elasticity.Comment: 4 pages, RevTeX, 2 figures, corrected typo

    The impact of lepton-flavor violating Z' bosons on muon g-2 and other muon observables

    Get PDF
    A lepton-flavor violating (LFV) Z' boson may mimic some of the phenomena usually attributed to supersymmetric theories. Using a conservative model of LFV Z' bosons, the recent BNL E821 muon g-2 deviation allows for a LFV Z' interpretation with a boson mass up to 4.8 TeV while staying within limits set by muon conversion, mu -> e gamma, and mu -> eee. This model is immediately testable as one to twenty e^+e^- -> mu tau events are predicted for an analysis of the LEP II data. Future muon conversion experiments, MECO and PRIME, are demonstrated to have potential to probe very high boson masses with very small charges, such as a 10 TeV boson with an e-mu charge of 10^-5. Furthermore, the next linear collider is shown to be highly complementary with muon conversion experiments, which are shown to provide the strictest and most relevant bounds on LFV phenomena.Comment: 17 pages, 6 figures, uses feynMF, edited references (v2), corrected MEGA experimental limit (v3), accepted to Phys. Rev.

    Spectroscopy of 18^{18}Na: Bridging the two-proton radioactivity of 19^{19}Mg

    Full text link
    The unbound nucleus 18^{18}Na, the intermediate nucleus in the two-proton radioactivity of 19^{19}Mg, was studied by the measurement of the resonant elastic scattering reaction 17^{17}Ne(p,17^{17}Ne)p performed at 4 A.MeV. Spectroscopic properties of the low-lying states were obtained in a R-matrix analysis of the excitation function. Using these new results, we show that the lifetime of the 19^{19}Mg radioactivity can be understood assuming a sequential emission of two protons via low energy tails of 18^{18}Na resonances

    Degradation versus self-assembly of block copolymer micelles

    Full text link
    The stability of micelles self-assembled from block copolymers can be altered by the degradation of the blocks. Slow degradation shifts the equilibrium size distribution of block copolymer micelles and change their properties. Quasi-equilibrium scaling theory shows that the degradation of hydrophobic blocks in the core of micelles destabilize the micelles reducing their size, while the degradation of hydrophilic blocks forming coronas of micelles favors larger micelles and may, at certain conditions, induce the formation of micelles from individual chains.Comment: Published in Langmuir http://pubs.acs.org/doi/pdf/10.1021/la204625

    Toward Forecasting Volcanic Eruptions using Seismic Noise

    Full text link
    During inter-eruption periods, magma pressurization yields subtle changes of the elastic properties of volcanic edifices. We use the reproducibility properties of the ambient seismic noise recorded on the Piton de la Fournaise volcano to measure relative seismic velocity variations of less than 0.1 % with a temporal resolution of one day. Our results show that five studied volcanic eruptions were preceded by clearly detectable seismic velocity decreases within the zone of magma injection. These precursors reflect the edifice dilatation induced by magma pressurization and can be useful indicators to improve the forecasting of volcanic eruptions.Comment: Supplementary information: http://www-lgit.obs.ujf-grenoble.fr/~fbrengui/brenguier_SI.pdf Supplementary video: http://www-lgit.obs.ujf-grenoble.fr/~fbrengui/brenguierMovieVolcano.av

    Entropic Tension in Crowded Membranes

    Get PDF
    Unlike their model membrane counterparts, biological membranes are richly decorated with a heterogeneous assembly of membrane proteins. These proteins are so tightly packed that their excluded area interactions can alter the free energy landscape controlling the conformational transitions suffered by such proteins. For membrane channels, this effect can alter the critical membrane tension at which they undergo a transition from a closed to an open state, and therefore influence protein function \emph{in vivo}. Despite their obvious importance, crowding phenomena in membranes are much less well studied than in the cytoplasm. Using statistical mechanics results for hard disk liquids, we show that crowding induces an entropic tension in the membrane, which influences transitions that alter the projected area and circumference of a membrane protein. As a specific case study in this effect, we consider the impact of crowding on the gating properties of bacterial mechanosensitive membrane channels, which are thought to confer osmoprotection when these cells are subjected to osmotic shock. We find that crowding can alter the gating energies by more than 2  kBT2\;k_BT in physiological conditions, a substantial fraction of the total gating energies in some cases. Given the ubiquity of membrane crowding, the nonspecific nature of excluded volume interactions, and the fact that the function of many membrane proteins involve significant conformational changes, this specific case study highlights a general aspect in the function of membrane proteins.Comment: 20 pages (inclduing supporting information), 4 figures, to appear in PLoS Comp. Bio
    • 

    corecore