103 research outputs found

    Priming by Chemokines Restricts Lateral Mobility of the Adhesion Receptor LFA-1 and Restores Adhesion to ICAM-1 Nano-Aggregates on Human Mature Dendritic Cells

    Get PDF
    LFA-1 is a leukocyte specific β2 integrin that plays a major role in regulating adhesion and migration of different immune cells. Recent data suggest that LFA-1 on mature dendritic cells (mDCs) may function as a chemokine-inducible anchor during homing of DCs through the afferent lymphatics into the lymph nodes, by transiently switching its molecular conformational state. However, the role of LFA-1 mobility in this process is not yet known, despite that the importance of lateral organization and dynamics for LFA-1-mediated adhesion regulation is broadly recognized. Using single particle tracking approaches we here show that LFA-1 exhibits higher mobility on resting mDCs compared to monocytes. Lymphoid chemokine CCL21 stimulation of the LFA-1 high affinity state on mDCs, led to a significant reduction of mobility and an increase on the fraction of stationary receptors, consistent with re-activation of the receptor. Addition of soluble monomeric ICAM-1 in the presence of CCL21 did not alter the diffusion profile of LFA-1 while soluble ICAM-1 nano-aggregates in the presence of CCL21 further reduced LFA-1 mobility and readily bound to the receptor. Overall, our results emphasize the importance of LFA-1 lateral mobility across the membrane on the regulation of integrin activation and its function as adhesion receptor. Importantly, our data show that chemokines alone are not sufficient to trigger the high affinity state of the integrin based on the strict definition that affinity refers to the adhesion capacity of a single receptor to its ligand in solution. Instead our data indicate that nanoclustering of the receptor, induced by multi-ligand binding, is required to maintain stable cell adhesion once LFA-1 high affinity state is transiently triggered by inside-out signals.Peer ReviewedPostprint (published version

    Differential Scanning Fluorimetry provides high throughput data on silk protein transitions

    Get PDF
    Here we present a set of measurements using Differential Scanning Fluorimetry (DSF) as an inexpensive, high throughput screening method to investigate the folding of silk protein molecules as they abandon their first native melt conformation, dehydrate and denature into their final solid filament conformation. Our first data and analyses comparing silks from spiders, mulberry and wild silkworms as well as reconstituted ‘silk’ fibroin show that DSF can provide valuable insights into details of silk denaturation processes that might be active during spinning. We conclude that this technique and technology offers a powerful and novel tool to analyse silk protein transitions in detail by allowing many changes to the silk solutions to be tested rapidly with microliter scale sample sizes. Such transition mechanisms will lead to important generic insights into the folding patterns not only of silks but also of other fibrous protein (bio)polymers

    Geometry sensing by dendritic cells dictates spatial organization and PGE2-induced dissolution of podosomes

    Get PDF
    Assembly and disassembly of adhesion structures such as focal adhesions (FAs) and podosomes regulate cell adhesion and differentiation. On antigen-presenting dendritic cells (DCs), acquisition of a migratory and immunostimulatory phenotype depends on podosome dissolution by prostaglandin E2 (PGE2). Whereas the effects of physico-chemical and topographical cues have been extensively studied on FAs, little is known about how podosomes respond to these signals. Here, we show that, unlike for FAs, podosome formation is not controlled by substrate physico-chemical properties. We demonstrate that cell adhesion is the only prerequisite for podosome formation and that substrate availability dictates podosome density. Interestingly, we show that DCs sense 3-dimensional (3-D) geometry by aligning podosomes along the edges of 3-D micropatterned surfaces. Finally, whereas on a 2-dimensional (2-D) surface PGE2 causes a rapid increase in activated RhoA levels leading to fast podosome dissolution, 3-D geometric cues prevent PGE2-mediated RhoA activation resulting in impaired podosome dissolution even after prolonged stimulation. Our findings indicate that 2-D and 3-D geometric cues control the spatial organization of podosomes. More importantly, our studies demonstrate the importance of substrate dimensionality in regulating podosome dissolution and suggest that substrate dimensionality plays an important role in controlling DC activation, a key process in initiating immune responses

    Single-molecule spectroscopy of fluorescent proteins

    Full text link

    Characterization of Eucalyptus nitens Lignins Obtained by Biorefinery Methods Based on Ionic Liquids

    Get PDF
    Eucalyptus nitens wood samples were subjected to consecutive stages of hydrothermal processing for hemicellulose solubilization and delignification with an ionic liquid, i.e., either 1-butyl-3-methylimidazolium hydrogen sulfate or triethylammonium hydrogen sulfate. Delignification experiments were carried out a 170 °C for 10–50 min. The solid phases from treatments, i.e., cellulose-enriched solids, were recovered by centrifugation, and lignin was separated from the ionic liquid by water precipitation. The best delignification conditions were identified on the basis of the results determined for delignification percentage, lignin recovery yield, and cellulose recovery in solid phase. The lignins obtained under selected conditions were characterized in deep by 31P-NMR, 13C-NMR, HSQC, and gel permeation chromatography. The major structural features of the lignins were discussed in comparison with the results determined for a model Ionosolv lignin

    Integral fractionation of Arundo donax using biphasic mixtures of solvents derived from biomass: An environmentally friendly approach

    No full text
    Arundo donax, one of the most invasive plants in the world, but also a promising source of lignocellulose materials was employed as a feedstock for a biorefinery process. Water-extracted Arundo donax samples were subjected to one-step biphasic fractionation in catalyzed media containing water and 1-butanol, an environmentally-friendly solvent. The effects of selected operational variables (catalyst concentration, temperature and reaction time) on the measured effects (solid recovery yield and compositions of the solid, aqueous and organic phases resulting from treatments) were assessed using statistical methods. The results allowed a quantitative discussion on aspects regarding the selectivity of component separation (lignin, glucan, and hemicelluloses), the overall recovery of valuable products, and the selection of operational conditions enabling extensive delignification (around to 90 %) and high recovery rates of glucan and hemicellulose-derived sugars (above 80 % and 75 %, respectively). This study provides new insights into biphasic fractionation, highlighting the selective separation of hemicellulose, cellulose and lignin into a single and sustainable process, thereby by enhancing biomass resource while reducing environmental impact

    Purification of xylitol obtained by fermentation of corncob hydrolysates

    No full text
    Hydrolysates obtained by autohydrolysis-posthydrolysis of corncobs were detoxified with charcoal, concentrated, supplemented with nutrients, and fermented with Debaryomyces hanseni
    corecore