13 research outputs found

    Beyond the simple Proximity Force Approximation: geometrical effects on the non-retarded Casimir interaction

    Get PDF
    We study the geometrical corrections to the simple Proximity Force Approximation for the non-retarded Casimir force. We present analytical results for the force between objects of various shapes and substrates, and between pairs of objects. We compare the results to those from more exact numerical calculations. We treat spheres, spheroids, cylinders, cubes, cones, and wings; the analytical PFA results together with the geometrical correction factors are summarized in a table.Comment: 18 pages, 19 figures, 1 tabl

    The effect of metal precursor on copper phase dispersion and nanoparticle formation for the catalytic transformations of furfural

    Get PDF
    The formation of copper-based catalysts ranging from nanoparticles to isolated and dimeric Cu species supported on nanophased alumina is reported and utilised for the catalytic liquid-phase hydrogenation of furfural. The materials were synthesised via wet impregnation using various copper precursors (nitrate, acetate and sulphate) at two different loadings. A high Cu loading (5.0 wt.%) led to the formation of well-defined nanoparticles, while a lower loading (1.0 wt.%) generated a highly dispersed phase consisting mostly of atomic and dimeric Cu species dispersed on Al 2O 3. The catalytic reaction was found to be structure sensitive, promoting decarbonylation reactions with low Cu loading. Copper sulphate derived catalysts were found to severely decrease furfuryl alcohol selectivity from 94.6% to 0.8%, promoting the formation of side reactions. The sulphur-free catalysts represent a greener and more sustainable alternative to the toxic catalysts currently used in industry, operating at milder conditions of 50 °C and 1.5 bar H 2

    Hydrothermal saline promoted grafting of periodic mesoporous organic sulfonic acid silicas for sustainable FAME production

    Get PDF
    Hydrothermal saline promoted grafting of sulfonic acid groups onto SBA-15 and periodic mesoporous organic silica analogues affords solid acid catalysts with high acid site loadings (>2.5 mmol g-1 H+), ordered mesoporosity and tunable hydrophobicity. The resulting catalysts show excellent activity for fatty acid esterification and tripalmitin transesterification to methyl palmitate, with framework phenyl groups promoting fatty acid methyl esters production. (Chemical Equation Presented

    Purification and immobilization of engineered glucose dehydrogenase: A new approach to producing gluconic acid from breadwaste

    Get PDF
    Background Platform chemicals are essential to industrial processes. Used as starting materials for the manufacture of diverse products, their cheap availability and efficient sourcing are an industrial requirement. Increasing concerns about the depletion of natural resources and growing environmental consciousness have led to a focus on the economics and ecological viability of bio-based platform chemical production. Contemporary approaches include the use of immobilized enzymes that can be harnessed to produce high-value chemicals from waste. Results In this study, an engineered glucose dehydrogenase (GDH) was optimized for gluconic acid (GA) production. Sulfolobus solfataricus GDH was expressed in Escherichia coli. The Km and Vmax values for recombinant GDH were calculated as 0.87 mM and 5.91 U/mg, respectively. Recombinant GDH was immobilized on a hierarchically porous silica support (MM-SBA-15) and its activity was compared with GDH immobilized on three commercially available supports. MM-SBA-15 showed significantly higher immobilization efficiency (> 98%) than the commercial supports. After 5 cycles, GDH activity was at least 14% greater than the remaining activity on commercial supports. Glucose in bread waste hydrolysate was converted to GA by free-state and immobilized GDH. After the 10th reuse cycle on MM-SBA-15, a 22% conversion yield was observed, generating 25 gGA/gGDH. The highest GA production efficiency was 47 gGA/gGDH using free-state GDH. Conclusions This study demonstrates the feasibility of enzymatically converting BWH to GA: immobilizing GDH on MM-SBA-15 renders the enzyme more stable and permits its multiple reuse

    Influence of alkyl chain length on sulfated zirconia catalysed batch and continuous esterification of carboxylic acids by light alcohols

    Get PDF
    The impact of alkyl chain length on the esterification of C2–C16 organic acids with C1–C4 alcohols has been systematically investigated over bulk and SBA-15 supported sulfated zirconias (SZs). Rates of catalytic esterification for methanol with acetic acid are directly proportional to the sulfur content for both SZ and SZ/SBA-15, with the high dispersion of SZ achievable in conformal coatings over mesoporous SBA-15 confering significant rate-enhancements. Esterification over the most active 0.24 mmol gcat−1 bulk SZ and 0.29 mmol gcat−1 SZ/SBA-15 materials was inversely proportional to the alkyl chain length of alcohol and acid reactants; being most sensitive to changes from methanol to ethanol and acetic to hexanoic acids respectively. Kinetic analyses reveal that these alkyl chain dependencies are in excellent accord with the Taft relationship for polar and steric effects in aliphatic systems and the enthalpy of alcohol adsorption, implicating a Langmuir–Hinshelwood mechanism. The first continuous production of methyl propionate over a SZ fixed-bed is also demonstrated

    Facile route to conformal hydrotalcite coatings over complex architectures:a hierarchically ordered nanoporous base catalyst for FAME production

    Get PDF
    An alkali- and nitrate-free hydrotalcite coating has been grafted onto the surface of a hierarchically ordered macroporous-mesoporous SBA-15 template via stepwise growth of conformal alumina adlayers and their subsequent reaction with magnesium methoxide. The resulting low dimensional hydrotalcite crystallites exhibit excellent per site activity for the base catalysed transesterification of glyceryl triolein with methanol for FAME production

    Mesoporous sulfonic acid silicas for pyrolysis bio-oil upgrading via acetic acid esterification

    No full text
    Propylsulfonic acid derivatised SBA-15 catalysts have been prepared by post modification of SBA-15 with mercaptopropyltrimethoxysilane (MPTMS) for the upgrading of a model pyrolysis bio-oil via acetic acid esterification with benzyl alcohol in toluene. Acetic acid conversion and the rate of benzyl acetate production was proportional to the PrSO3H surface coverage, reaching a maximum for a saturation adlayer. Turnover frequencies for esterification increase with sulfonic acid surface density, suggesting a cooperative effect of adjacent PrSO3H groups. Maximal acetic acid conversion was attained under acid-rich conditions with aromatic alcohols, outperforming Amberlyst or USY zeolites, with additional excellent water tolerance

    Alkali- and nitrate-free synthesis of highly active Mg-Al hydrotalcite-coated alumina for FAME production

    No full text
    MgAl hydrotalcite coatings have been grown on alumina via a novel alkali- and nitrate-free impregnation route and subsequent calcination and hydrothermal treatment. The resulting MgHT/Al2O3 catalysts significantly outperform conventional bulk hydrotalcites prepared via co-precipitation in the transesterification of C4C18 triglycerides for fatty acid methyl ester (FAME) production, with rate enhancements increasing with alkyl chain length. This promotion is attributed to improved accessibility of bulky triglycerides to active surface base sites over the higher area alumina support compared to conventional hydrotalcites wherein many active sites are confined within the micropores

    Hydrothermal reconstructing routes of alkali-free znal layered double hydroxide:A characterization study

    No full text
    A facile, rapid, and noninvasive method for reconstructing ZnAl layered double hydroxide (LDH) is reported. ZnAl LDH series were synthesized at different Zn2+/Al3+ atomic ratio (1.5-4) via an alkali-free method and reconstructed under hydrothermal route (HTM) for the first time. Fresh Zn/Al LDHs were activated at 300°C and reconstructed under hydrothermal process. A better insight and correlation study between the physiochemical properties of reconstructed ZnAl LDH in terms of their crystallinity, surface area and basicity also will be gained here. BET surface area of rehydrated samples increased up to 355 m2/g (Zn:Al ratio 3:1). CO2-TPD probed high number of basic sites density (0.1 mmol/g)

    PdCu single atom alloys supported on alumina for the selective hydrogenation of furfural

    Get PDF
    Single-atom catalysts serve as a skilful control of precious metals on heterogenous catalysts where all active sites are accessible for catalytic reactions. Here we report the adoption of PdCu single-atom alloys supported on alumina for the selective hydrogenation of furfural. This is a special class of an atom efficient, single-site catalyst where trace concentrations of Pd atoms (0.0067 wt%) displace surface Cu sites on the host nanoparticle. Confirmed by EXAFS, the Pd atoms are entirely coordinated to Cu, with Pd-Cu bond lengths identical to that of a Cu-Cu bond. Selectively surface oxidised catalysts also confirm surface Pd atoms by EXAFS. These catalysts improve the conversion of furfural to furfuryl alcohol compared to monometallic catalysts, as they have the advantages of Cu (high selectivity but poor activity) and Pd catalysts (superior activity but unselective) without the drawbacks, making them the optimal catalysts for green/atom efficient catalysis
    corecore