181 research outputs found
The effect of different types of hepatic injury on the estrogen and androgen receptor activity of liver
Mammalian liver contains receptors for both estrogens and androgens. Hepatic regeneration after partial hepatectomy in male rats is associated with a loss of certain male-specific hepatic characteristics. In this study we investigated the effects of lesser forms of hepatic injury on the levels of estrogen and androgen receptor activity in the liver. Adult male rats were subjected to portacaval shunt, partial portal vein ligation, hepatic artery ligation, or two-thirds partial hepatectomy. Another group of animals was treated with cyclosporine. At the time of sacrifice the livers were removed and used to determine the estrogen and androgen receptor activity in the hepatic cytosol. A significant reduction (p < 0.05) in the hepatic cytosolic androgen receptor activity and a slight increase in the estrogen receptor activity occurred following total portosystemic shunting. Partial ligation of the portal vein, which produces a lesser degree of portosystemic shunting, had no effect on the levels of the estrogen and androgen receptor activity present within hepatic cytosol. Cyclosporine-treated animals had significantly greater (p < 0.01) levels of estrogen receptor activity in the hepatic cytosol compared to vehicle-treated control animals. Levels of estrogen and androgen receptor activity within the hepatic cytosol remained unchanged after ligation of the hepatic artery. The reduction in the cytosolic estrogen and androgen receptor activity in the liver after partial hepatectomy was confirmed. In summary, certain types of hepatic injury are associated with profound changes in the estrogen and androgen receptor content within the liver. © 1989 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted
Estradiol and testosterone levels in patients undergoing partial hepatectomy - A possible signal for hepatic regeneration?
In five adult male patients undergoing a 40-60% partial hepatectomy, serum sex hormone levels before and after hepatic resection were determined. Blood was drawn immediately prior to each surgical procedure and at specified time points postoperatively. Compared to hormone levels found prior to surgery, following major hepatic resection, estradiol levels increase at 24 and 48 hr, while testosterone levels decline, being significantly reduced at 96 and 144 hr. These data demonstrate that adult males who undergo a 40-60% partial hepatectomy experience alterations in their sex hormone levels similar to those observed in male rats following a 70% hepatectomy. These changes in sex hormone levels have been associated in animals with an alteration of the sex hormone receptor status of the liver that is thought to participate in the initiation of the regenerative response. These studies suggest, but do not prove, that in man, as in the case of the rat, sex hormones may participate in the initiation of or at least modulate in part the regenerative response that occurs following a major hepatic resection. © 1989 Plenum Publishing Corporation
Endoplasmic Reticulum Stress Is Reduced in Tissues of Obese Subjects After Weight Loss
OBJECTIVE—Obesity is associated with insulin resistance and type 2 diabetes, although the mechanisms linking these pathologies remain undetermined. Recent studies in rodent models revealed endoplasmic reticulum (ER) stress in adipose and liver tissues and demonstrated that ER stress could cause insulin resistance. Therefore, we tested whether these stress pathways were also present in obese human subjects and/or regulated by weight loss
Steatosis drives monocyte-derived macrophage accumulation in human metabolic dysfunction-associated fatty liver disease
BACKGROUND & AIMS: Metabolic dysfunction-associated fatty liver disease (MAFLD) is a common complication of obesity with a hallmark feature of hepatic steatosis. Recent data from animal models of MAFLD have demonstrated substantial changes in macrophage composition in the fatty liver. In humans, the relationship between liver macrophage heterogeneity and liver steatosis is less clear.
METHODS: Liver tissue from 21 participants was collected at time of bariatric surgery and analysed using flow cytometry, immunofluorescence, and H&E microscopy. Single-cell RNA sequencing was also conducted on a subset of samples (n = 3). Intrahepatic triglyceride content was assessed via MRI and tissue histology. Mouse models of hepatic steatosis were used to investigate observations made from human liver tissue.
RESULTS: We observed variable degrees of liver steatosis with minimal fibrosis in our participants. Single-cell RNA sequencing revealed four macrophage clusters that exist in the human fatty liver encompassing Kupffer cells and monocyte-derived macrophages (MdMs). The genes expressed in these macrophage subsets were similar to those observed in mouse models of MAFLD. Hepatic CD14
CONCLUSIONS: The human liver in MAFLD contains macrophage subsets that align well with those that appear in mouse models of fatty liver disease. Recruited myeloid cells correlate well with the degree of liver steatosis in humans. MdMs appear to participate in lipid uptake during early stages of MALFD.
IMPACT AND IMPLICATIONS: Metabolic dysfunction associated fatty liver disease (MAFLD) is extremely common; however, the early inflammatory responses that occur in human disease are not well understood. In this study, we investigated macrophage heterogeneity in human livers during early MAFLD and demonstrated that similar shifts in macrophage subsets occur in human disease that are similar to those seen in preclinical models. These findings are important as they establish a translational link between mouse and human models of disease, which is important for the development and testing of new therapeutic approaches for MAFLD
Prediction of tissue-specific cis-regulatory modules using Bayesian networks and regression trees
<p>Abstract</p> <p>Background</p> <p>In vertebrates, a large part of gene transcriptional regulation is operated by cis-regulatory modules. These modules are believed to be regulating much of the tissue-specificity of gene expression.</p> <p>Results</p> <p>We develop a Bayesian network approach for identifying cis-regulatory modules likely to regulate tissue-specific expression. The network integrates predicted transcription factor binding site information, transcription factor expression data, and target gene expression data. At its core is a regression tree modeling the effect of combinations of transcription factors bound to a module. A new unsupervised EM-like algorithm is developed to learn the parameters of the network, including the regression tree structure.</p> <p>Conclusion</p> <p>Our approach is shown to accurately identify known human liver and erythroid-specific modules. When applied to the prediction of tissue-specific modules in 10 different tissues, the network predicts a number of important transcription factor combinations whose concerted binding is associated to specific expression.</p
Matrix Orbit Closures
Let be the group \GL_r(\CC) \times (\CC^\times)^n. We conjecture that the finely-graded Hilbert series of a orbit closure in the space of -by- matrices is wholly determined by the associated matroid. In support of this, we prove that the coefficients of this Hilbert series corresponding to certain hook-shaped Schur functions in the \GL_r(\CC) variables are determined by the matroid, and that the orbit closure has a set-theoretic system of ideal generators whose combinatorics are also so determined. We also discuss relations between these Hilbert series for related matrices
Elemental composition of vegetables cultivated over coal-mining waste
ABSTRACT We assessed elemental composition of the liver in mice subjected to one-time or chronic consumption of the juice of vegetables cultivated in a vegetable garden built over deposits of coal waste. Lactuca sativa L. (lettuce), Beta vulgaris L. (beet), Brassica oleracea L. var. italica (broccoli) and Brassica oleracea L. var. acephala (kale) were collected from the coal-mining area and from a certified organic farm (control). Elemental composition was analyzed by particle-induced X-ray emission (PIXE) method. Concentrations of Mg, S, and Ca of mice subjected to one-time consumption of broccoli and concentrations of these same elements plus Si of mice receiving kale were higher in the coal-mining area. Concentrations of P, K, and Cu were increase after chronic consumption of lettuce from the coal-mining area, whereas the levels of Si, P, K, Fe, and Zn were higher in the group consuming kale from the coal-mining area. Our data suggests that people consuming vegetables grown over coal wastes may ingest significant amounts of chemical elements that pose a risk to health, since these plants contain both essential and toxic metals in a wide range of concentrations, which can do more harm than good
- …