148 research outputs found
Endogenous orienting modulates the Simon effect: critical factors in experimental design
Responses are faster when the side of stimulus and response correspond than when they do not correspond, even if stimulus location is irrelevant to the task at hand: the correspondence, spatial compatibility effect, or Simon effect. Generally, it is assumed that an automatically generated spatial code is responsible for this effect, but the precise mechanism underlying the formation of this code is still under dispute. Two major alternatives have been proposed: the referential-coding account, which can be subdivided into a static version and an attention-centered version, and the attention-shift account. These accounts hold clear-cut predictions for attentional cuing experiments. The former would assume a Simon effect irrespective of attentional cuing in its static version, whereas the attention-centered version of the referential-coding account and the attention-shift account would predict a decreased Simon effect on validly as opposed to invalidly cued trials. However, results from previous studies are equivocal to the effects of attentional cuing on the Simon effect. We argue here that attentional cueing reliably modulates the Simon effect if some crucial experimental conditions, mostly relevant for optimizing attentional allocation, are met. Furthermore, we propose that the Simon effect may be better understood within the perspective of supra-modal spatial attention, thereby providing an explanation for observed discrepancies in the literature
On Multifractal Structure in Non-Representational Art
Multifractal analysis techniques are applied to patterns in several abstract
expressionist artworks, paintined by various artists. The analysis is carried
out on two distinct types of structures: the physical patterns formed by a
specific color (``blobs''), as well as patterns formed by the luminance
gradient between adjacent colors (``edges''). It is found that the analysis
method applied to ``blobs'' cannot distinguish between artists of the same
movement, yielding a multifractal spectrum of dimensions between about 1.5-1.8.
The method can distinguish between different types of images, however, as
demonstrated by studying a radically different type of art. The data suggests
that the ``edge'' method can distinguish between artists in the same movement,
and is proposed to represent a toy model of visual discrimination. A ``fractal
reconstruction'' analysis technique is also applied to the images, in order to
determine whether or not a specific signature can be extracted which might
serve as a type of fingerprint for the movement. However, these results are
vague and no direct conclusions may be drawn.Comment: 53 pp LaTeX, 10 figures (ps/eps
Statistical mechanics of image restoration and error-correcting codes
We develop a statistical-mechanical formulation for image restoration and
error-correcting codes. These problems are shown to be equivalent to the Ising
spin glass with ferromagnetic bias under random external fields. We prove that
the quality of restoration/decoding is maximized at a specific set of parameter
values determined by the source and channel properties. For image restoration
in mean-field system a line of optimal performance is shown to exist in the
parameter space. These results are illustrated by solving exactly the
infinite-range model. The solutions enable us to determine how precisely one
should estimate unknown parameters. Monte Carlo simulations are carried out to
see how far the conclusions from the infinite-range model are applicable to the
more realistic two-dimensional case in image restoration.Comment: 20 pages, 9 figures, ReVTe
Early childhood adversities and trajectories of psychiatric problems in adoptees: Evidence for long lasting effects
The aim of the present study is to investigate whether early childhood adversities determine the longitudinal course of psychiatric problems from childhood to adulthood; in particular if the impact of early maltreatment on psychopathology decreases as time passes. A sample of 1,984 international adoptees was followed (955 males and 1029 females; adopted at the mean age of 29 months). Parents provided information about abuse, neglect and numbe
Aldosterone does not require angiotensin II to activate NCC through a WNK4–SPAK–dependent pathway
We and others have recently shown that angiotensin II can activate the sodium chloride cotransporter (NCC) through a WNK4–SPAK-dependent pathway. Because WNK4 was previously shown to be a negative regulator of NCC, it has been postulated that angiotensin II converts WNK4 to a positive regulator. Here, we ask whether aldosterone requires angiotensin II to activate NCC and if their effects are additive. To do so, we infused vehicle or aldosterone in adrenalectomized rats that also received the angiotensin receptor blocker losartan. In the presence of losartan, aldosterone was still capable of increasing total and phosphorylated NCC twofold to threefold. The kinases WNK4 and SPAK also increased with aldosterone and losartan. A dose-dependent relationship between aldosterone and NCC, SPAK, and WNK4 was identified, suggesting that these are aldosterone-sensitive proteins. As more functional evidence of increased NCC activity, we showed that rats receiving aldosterone and losartan had a significantly greater natriuretic response to hydrochlorothiazide than rats receiving losartan only. To study whether angiotensin II could have an additive effect, rats receiving aldosterone with losartan were compared with rats receiving aldosterone only. Rats receiving aldosterone only retained more sodium and had twofold to fourfold increase in phosphorylated NCC. Together, our results demonstrate that aldosterone does not require angiotensin II to activate NCC and that WNK4 appears to act as a positive regulator in this pathway. The additive effect of angiotensin II may favor electroneutral sodium reabsorption during hypovolemia and may contribute to hypertension in diseases with an activated renin–angiotensin–aldosterone system
Neodymium isotope constraints on provenance, dispersal, and climate-driven supply of Zambezi sediments along the Mozambique Margin during the past ∼45,000 years
Marine sediments deposited off the Zambezi River that drains a considerable part of the southeast African continent provide continuous records of the continental climatic and environmental conditions.
Here we present time series of neodymium (Nd) isotope signatures of the detrital sediment fraction during the past ~45,000 years, to reconstruct climate-driven changes in the provenance of clays deposited along the Mozambique Margin. Coherent with the surface current regime, the Nd isotope distribution in surface sediments reveals mixing of the alongshore flowing Zambezi suspension load with sediments supplied by smaller rivers located further north. To reconstruct past changes in sediment provenances, Nd isotope signatures
of clays that are not significantly fractionated during weathering processes have been obtained from core 64PE304-80, which was recovered just north of the Zambezi mouth at 1329 m water depth. Distinctly unradiogenic clay signatures (ENd values <214.2) are found during the Last Glacial Maximum, Heinrich Stadial 1, and Younger Dryas. In contrast, the Nd isotope record shows higher, more radiogenic isotope signatures during Marine Isotope Stage 3 and between ~15 and ~5 ka BP, the latter coinciding with the timing of the northern hemisphere African Humid Period. The clay-sized sediment fraction with the least radiogenic Nd isotope signatures was deposited during the Holocene, when the adjacent Mozambique Shelf became completely flooded. In general, the contribution of the distinctly unradiogenic Zambezi suspension load has followed the intensity of precession-forced monsoonal precipitation and enhanced during periods of increased southern hemisphere insolation and high-latitude northern hemispheric climate
variability
Effects of hand orientation on motor imagery - event related potentials suggest kinesthetic motor imagery to solve the hand laterality judgment task
Motor imagery (MI) refers to the process of imagining the execution of a specific motor action without actually producing an overt movement. Two forms of MI have been distinguished: visual MI and kinesthetic MI. To distinguish between these forms of MI we employed an event related potential (ERP) study to measure interference effects induced by hand orientation manipulations in a hand laterality judgement task. We hypothesized that this manipulation should only affect kinesthetic MI but not visual MI. The ERPs elicited by rotated hand stimuli contained the classic rotation related negativity (RRN) with respect to palm view stimuli. We observed that laterally rotated stimuli led to a more marked RRN than medially rotated stimuli. This RRN effect was observed when participants had
their hands positioned in either a straight (control) or an inward rotated posture, but not when their hands were positioned in an outward rotated posture. Posture effects on the ERP-RRN have not previously been studied. Apparently, a congruent hand posture (hands positioned in an outward rotated fashion) facilitates the judgement of the otherwise more demanding laterally rotated hand stimuli. These ERP findings support a kinesthetic interpretation of MI involved in solving the hand laterality judgement task. The RRN may be used as a non-invasive marker for kinesthetic MI and seems useful in revealing the covert behavior of MI in e.g. rehabilitation programs
Sensory information in perceptual-motor sequence learning: visual and/or tactile stimuli
Sequence learning in serial reaction time (SRT) tasks has been investigated mostly with unimodal stimulus presentation. This approach disregards the possibility that sequence acquisition may be guided by multiple sources of sensory information simultaneously. In the current study we trained participants in a SRT task with visual only, tactile only, or bimodal (visual and tactile) stimulus presentation. Sequence performance for the bimodal and visual only training groups was similar, while both performed better than the tactile only training group. In a subsequent transfer phase, participants from all three training groups were tested in conditions with visual, tactile, and bimodal stimulus presentation. Sequence performance between the visual only and bimodal training groups again was highly similar across these identical stimulus conditions, indicating that the addition of tactile stimuli did not benefit the bimodal training group. Additionally, comparing across identical stimulus conditions in the transfer phase showed that the lesser sequence performance from the tactile only group during training probably did not reflect a difference in sequence learning but rather just a difference in expression of the sequence knowledge
- …