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Abstract

Multifractal analysis techniques are applied to patterns in several abstract

expressionist artworks, paintined by various artists. The analysis is carried

out on two distinct types of structures: the physical patterns formed by a

specific color (“blobs”), as well as patterns formed by the luminance gradi-

ent between adjacent colors (“edges”). It is found that the analysis method

applied to “blobs” cannot distinguish between artists of the same movement,

yielding a multifractal spectrum of dimensions between about 1.5−1.8. The

method can distinguish between different types of images, however, as demon-

strated by studying a radically different type of art. The data suggests that

the “edge” method can distinguish between artists in the same movement,

and is proposed to represent a toy model of visual discrimination. A “fractal

reconstruction” analysis technique is also applied to the images, in order to

determine whether or not a specific signature can be extracted which might
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serve as a type of fingerprint for the movement. However, these results are

vague and no direct conclusions may be drawn.

PACS Primary: 89.75.Da; secondary: 95.75.mN; tertiary: 89.75.Kd

2



1 Introduction and Background

The use of fractal analysis methods to study structure in art and music

is not a new field. Recently, the question of perceptability of such fractal

structure has been addressed. The authors of References [1, 2] pose the

question of whether or not humans are “attuned” to the perception of fractal-

like optical and auditory stimuli. Similarly, [3] suggests that there is a fractal-

like signature in memory processes which can be detected in the statistical

variance of averaged repeated actions (such as repeated drawing lines of

specific lengths or shapes; the statistical variations in the lengths are shown

to be not purely random noise, but fractally ordered “1/f” noise).

In the visual arts, there have been several contributions made by the

authors of [4, 5, 6, 7], in which the paintings of Jackson Pollock play a

prominent role. Of their many interesting conclusions, the most striking is

that Pollock’s drip paintings almost uniformly possess a fractal dimension

around 1.7. This was confirmed by the authors of [8, 9], who also extended

the study to other artists of the abstract expressionist school (notably the

Québec-based group Les Automatistes). It was discovered that many of the

paintings from these other artists possess a similar fractal dimension.

Similar research on computer-generated cosmological models suggests that

the fractal (or box) dimension is a vague statistic for identifying structural

differences in point sets, and that the full multifractal spectrum can yield

deeper information as to the nature of the distributions [10]. However, it has

been concluded that the utility of the method seems limited to identifying

classes of distributions formed by different mechanisms, and not differences

between individual members of the same class.
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In the following paper, this method will be applied to two-dimensional,

non-representational images, to ascertain whether or not similar statements

may be made about the analysis. Summary results of this study have been

reported in Reference [9], but this paper will greatly expand upon the data

and present technical details of the analysis in diverse ways. An overview

of fractal and multifractal theory is first presented. Following this, the frac-

tal (box) dimension for several abstract expressionist paintings by different

artists is performed, and this is contrasted with the information dimension

for the same works. The box method is tested for robustness in Section 5.

As a control, these abstract expressionist are contrasted with the deter-

ministic “Artonomy” paintings by Tsion Avital [11]. Like the three dimen-

sional distributions, the two former works can be interpreted to be formed by

one type of mechanism (although the comparison is perhaps more ambigu-

ous), while the latter a decidedly different mechanism (this differentiation

will be further discussed in Section 8).

The analysis will then be extended to include the full multifractal spec-

trum for each work. A comprehensive analysis is performed on color pat-

terns for the artists in question, beginning in Section 7. Furthermore, issues

addressing potential image reconstruction from the multifractal spectrum is

discussed in Section 9. Finally, as a toy model for visual discrimination based

on the notion that human perception may be influenced by contrast edges in-

stead of colors, the multifractal spectra of contrast patterns in the paintings

are analyzed in Section 10. Some limitations of the method are discussed in

Section 11, and concluding remarks are summarized in Section 12.
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2 Theory of Multifractals

The similarity in form and function of the classic fractal (or box) dimension,

Shannon’s information dimension, and the statistical correlation dimension

is not a coincidence (see References [12, 13, 14, 15] for general details on these

dimensions). In fact, these quantities are but three members of an infinite set

of dimensions which characterize a fractal set. Since first being introduced

as a method of describing or quantifying the behavior of strange attractor

sets and turbulent flows, multifractal analysis has gained steady momentum

in physics and fields abroad [16, 17, 18, 19, 20]. Comprehensive reviews

of multifractals and their applications in the physical sciences are available

in the aforementioned references, as well as such works as [21, 22, 23], in

addition to many of the references cited hereafter.

Classic geometric “monofractals” such as the Koch snowflake or Sierpinski

carpet are defined by a single scale invariant behavior, which of course is

the fractal dimension, but in many cases a single such power law fails to

characterize completely the distribution in question. Multifractals, on the

other hand, may be regarded as an intricate weave of an infinite number of

fractals, all of which are characterized by different (local) scaling dimensions.

That is, each subset forms a “sub-fractal” describing a distinct sub-structure

of the whole. It is much more reasonable and realistic to expect natural

objects to exhibit this behavior.

Multifractal dimensions are generalizations of the Hausdorff measure [13].

The partition function for an ǫ-covering (i.e. balls of radius ǫi) is defined as
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[17, 20]

Γ(q, τ) =
∑

i

pq
i

ǫτ
i

, (1)

with pi a measure of the set or pattern density in the ball. For given q, τ(q) ∈
R, take the supremum (or infimum, depending on whether q is positive or

negative, respectively) in the limit ǫi → 0 (thus find the minimal covering set

for the generalized measure). Then, there exists a critical value of τ ≡ τ(q)

for which Γ(q, τ) goes from convergence to 0, to divergence to ∞. At this

transitionary value, the sum converges as Γ(q, τ) = const. The minimal

covering may be generalized to balls of equal radii ǫi = ǫ, whence it follows

that

Γ(q, τ) = ǫ−τ(q)
∑

i

pq
i ∼ 1 , (2)

for a suitable renormalization of the measure. Hence,

∑

i

pq
i ∼ ǫτ(q) , (3)

and thus in the limit ǫ → 0, it can be shown that

τ(q) = lim
ǫ→0

log[
∑

i p
q
i ]

log ǫ
. (4)

Let the measure partition function over N(ǫ) balls of radius i be

Z(q, ǫ) =
N(ǫ)
∑

i=1

[pi(ǫ)]
q , (5)

and define the general scaling relation Z(q, ǫ) ∼ ǫ(q−1) Dq [23], which ensures

recovery of the Hausdorff dimension for q = 0, as well as normalization of

(5) for q = 1. From (4), it can be concluded that

Dq =
τ(q)

q − 1
. (6)
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In the limit q → 0, (1) reduces to the usual box dimension. Furthermore, the

information and correlation dimensions are recovered in the limits q → 1, 2.

In practical applications, the box counting method can be generalized to

obtain the values of τ(q) for given q. That is, modify the partition function

Z(q, ǫ) over N(ǫ) to sets of covering boxes (instead of balls) of equal side ǫ,

where as before pi(ǫ) is the relative density of the set in box i. The scaling

information of each moment is obtained by taking the logarithmic derivative

of (5) with respect to box size, where

τ(q) =
d log[Z(q, ǫ)]

d log(ǫ)
. (7)

The moment parameter q can be thought of as a filter, which identifies

only the singularity characteristics of the distribution at a particular “de-

gree” of clustering. Increasing values of q > 0 emphasize the stronger local

clustering nature of the pattern, while decreasing values of q < 0 the less

singular regions. That is, higher values of q serve to “eliminate” the smaller

values of pi, yielding a subset of the overall distribution whose scaling be-

havior is more condensed (and vice versa for negative q). Likewise, the other

Dq provide a measure of the number of q-tuples whose mutual separation is

contained within a covering box (ball) of size ǫ. Thus, a quantitative mea-

sure of the Dq spectrum yields an understanding of all order of correlations

amongst clusters of varying densities.

Certain key values of Dq are extremely useful in characterizing the phys-

ical clustering characteristics of a set. In addition to the values D0,1,2 men-

tioned before, the generalized dimensions for the limits q → ±∞ yield valu-

able information about the maximal and minimal density regions of the set.

D∞ is a measure of the scaling behavior for the densest clustering regions of
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the multifractal, while D−∞ corresponds to the equivalent for the least dense

or “rarefied” regions.

In essence, the multifractal measures give an indication of “how fractal

is the fractal”. A measure of the difference between the box dimension and

any successive Dq value

∆ = Dq − D0 . (8)

provides an estimate of the “degree” of inhomogeneity of the associated prob-

ability distribution [22]. In particular, it seems reasonable to evaluate ∆|q→∞

as an overall gauge of the “depth” of inhomogeneity. Clearly, it follows that

∆ = 0 for single-scaling Euclidean normal or monofractal sets, so the larger

the value of ∆, the greater the “multifractality”.

3 Fractal Expressionism

In the last 1990s, the application of fractal analysis to the study of abstract

expressionist art began to gain momentum, the first of which was reported in

[5]. It was concluded that Jackson Pollock’s work did indeed present certain

fractal characteristics. Coined “Fractal Expressionism”, the authors in ques-

tion proposed that Pollock’s drip paintings were constructed by processes

not unlike those which help to forge the myriad of similarly fractal natural

phenomena. In fact, they further suggested that by painting with such “au-

tomatism”, Pollock succeeded in capturing the very essence of nature within

his works.

In particular, it was noted that most of the paintings studied contain at

least two distinct scaling behaviors at different levels, much the same as the
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debated transitions to homogeneity in galaxy clustering. The first of these

occurred at scales on the order of 1 mm to about 5 cm, beyond which point

a second scaling is observed up to scales of several meters [4]. After a review

of Pollock’s painting methods and techniques, it was determined that these

two dimensions were the result of two distinct physical processes. The larger-

scale patterns resulted from Pollock’s “Levy flights” across the canvas (a Levy

Flight is a combination of discrete, random jumps coupled with local fractal

Brownian motion [23]). Likewise, the small-scale structure was attributed to

his infamous “drip” technique, which was largely dependent on the physical

characteristics of the paint (viscosity, the height from which it was dripped,

absorption into the canvas, etc...).

These two dimensions are coined DL (Levy) and DD (Drip), and in general

it was found that DL > DD (in fact, the authors of [4] claim that DL tended

to values close to 2, indicative of the “space-filling” behavior of Pollock’s

Levy Flights). Furthermore, it was claimed that DL tended to increase from

1 to about 1.7 between the early 1940s to the late 40s / early 50s (around

the time Pollock perfected his drip technique [24]).

Their analysis focused exclusively on the works of Jackson Pollock, and

these dimensions are attribute to his own artistic style. In the spirit of the

aforementioned conclusions of [10], however, the question should be asked as

to whether or not such an analysis truly pinpoints anything “unique” about

the artist in question, or whether the resulting statistics are shared by a

common set of images and patterns formed by similar methods.
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3.1 Image specifics

The majority of the images considered in this study are digital scans of

Pollock’s works from the references [24, 25]. Images by Les Automatistes

have been scanned from [26]. The resolution of the scans was chosen as

300 dpi, creating images roughly 1000 pixels (px) in length (longest side)

and files 20 Mb in size. The analysis has been performed on approximately

25 Jackson Pollock paintings, revealing similar trends for each. However, this

discussion will be restricted to a small sample set of six. The images herein

are listed in Table 1. At the specified resolution, each pixel corresponds to

approximately 0.1-0.4 cm, although this will depend on the actual reduction

scale from the base image.

The covering boxes range in size from d =1024 px to d =4 px, or length

scales of roughly 1.5− 2.5 m to a few millimeters. Hence, the analysis covers

about 3 orders of magnitude. Higher resolutions could allow for greater range

of scales, but would correspond to much larger images and longer run-times

/ higher memory requirements for the code. It was verified that the quality

of the fits did not change appreciably for a lower limit of d = 2, and the

estimated dimensions were statistically equal to within the associated error.

3.2 Color Variance Filter Process

Accurate definitions of colors and color differences are very difficult to obtain.

Any investigation which relies on color matching must do so with care. The

following procedure is a rough example of how like colors might be extracted

from an image, based on their Euclidean separation in the three dimensional
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RGB color space.

To trace or filter the pattern of a given pigment, the variation in shading

is accounted for via the color-variance filter process. The images studied

herein are 24-bit color maps, hence each separate channel may assume 256

possible values. An RGB triplet is chosen as the target color, each pixel

(channel) intensity in the image is then compared to the initial triplets R0,

G0, B0 (hereafter RGB0), and the Euclidean distance (or color radius) is

calculated,

RRGB =
√

(R0 − Rpix)2 + (G0 − Gpix)2 + (B0 − Bpix)2 , (9)

Figure 1 shows the filtered pattern for βRGB = 20 for image P02. Pat-

terns are isolated by including pixels for which RRGB ≤ β, a cutoff whose

value is determined by examination of the RGB histogram for the color in

question. Figure 2 shows the R, G, and B pixel intensity histogram for the

“black” pigment of image P04, which is generally of the same form for all im-

ages considered herein. The peaks of each correspond roughly to the values

(R, G, B) = (21, 17, 21), which is taken as the target color RGB0. Note the

smooth drop-off for increasing (and decreasing) values of the pixel intensities.

For the paintings considered, it was found that most RGB histogram

spreads tend to extend no more than 5-20 pixel intensities from the central

peak. Hence, it seems reasonable to assume that the cutoff β should be

between β ∈ (10
√

3 − 20
√

3) ≃ (10, 40).

The pseudo-normal nature of the distribution in Figure 2 suggests that

a Gaussian filter, which weights colors according to their distance from

the “target”, would be more appropriate that the cut-off filter considered

presently. This type of filter is inappropriate for calculation of the box Di-
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mension, for which any box is counted in which there exists a point in the

allowable range (i.e. this would result in a severe over-count of boxes). How-

ever, a “weighted” information dimension is certainly feasible, in which one

assigns the color match a value of exp(−R2
RGB/a2), with a2 the FWHM cor-

responding to the average histogram spread. This filter would be better

exploited in the multifractal analysis of 7. However, preliminary calculations

suggest that the results will not vary significantly from those of the cut-off

method described herein. Since the very notion of color distance discrimina-

tion itself is somewhat of a fuzzy area (see e.g. [27] or similar references), it

is best not to “over-complicate” the procedure at this given stage of devel-

opment. Thus, only the cut-off will be used in this study.

4 The Box and Information Dimension of Jack-

son Pollock’s Work

As previously mentioned, the information dimension can be considered a

better statistic for the study of recursive patterns. That is, the box dimension

can sometimes provide an overestimate of the scaling behavior, since it does

not account for the relative density of points within the box. Although these

specific results have been reported in [9], a slightly different analysis of the

findings was given in that Reference. What follows will be a more technical

discussion of the results.

Table 2 presents the corresponding dimension estimates for each painting.

The Box Dimensions calculated by a least-squares regression on the data

points seems to provide a good agreement to the results cited in [4], who
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found e.g. D0 = 1.67 for P02 and 1.72 for P01. This suggests that a value

of β ∈ [20, 30] would be in rough agreement with their analysis.

However, closer inspection of the results of Table 2 reveals that in certain

cases the estimate of the dimension is critically dependent on a correct choice

of β: the darker colors appear more stable, while the lighter ones show wider

variation. In order for this analysis technique to be useful, these selection

criteria must be extremely well defined. Otherwise, the results risk becoming

meaningless. Ideally, some kind of variance in choice of β should be incor-

porated into the overall error estimate. The issue of color space selection is

discussed in Reference [28].

As mentioned in the previous section, the authors noted an apparent

break in the slope of the log-log plot, and assumed that this represented

different scaling behavior of two different mechanisms. The shallower slope

was taken to be representative of Pollock’s painting technique. In fact, in

reference [29], the author discusses the association of two distinct dimensions

based on the topological morphology of the fractal (for higher length scales),

as well as its texture (lower scales). These two dimensions are appropriately

labeled as those of the structural fractal and textural fractal, respectively.

Relating to the work of [4], it is not unreasonable to interpret their two

dimensions accordingly, i.e. the overall “structure” of the painting at higher

length scales, and the fine-grained refinement at lower scales.

Note that in the analysis presented herein, the two-slope hypothesis of [4]

is not supported when one considers the magnitudes of the associated errors

in the least-squares procedure. The confidence level curves suggest that the

“shallow” slope at lower length scales could be explained as statistical varia-
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tion in the fit. The fits in Figure 3 show box and information sample plots for

P02 with 95% confidence level curves from the least-squares fit. The infor-

mation Dimension D1 is shown as a “refinement” of D0, which demonstrates

even less bi-scale behavior, suggesting that the two-slope hypothesis may be

an artifact of the box-counting method. The data provides a very clean linear

fit in both cases, generally better for the information dimension D1, albeit

not significantly (r2 = 99.9% vs 99.8%). Similar behavior is observed for the

other images.

In fact, the lower-scale measurement process is somewhat dependent on

the resolution of the image. Some of the fits suggest a shallower slope at

smaller scale lengths, but it is not necessarily justified to assume that this

behavior is an artifact of the pattern, and not the resolution of the image, or

limitations of the counting/analysis method.

Although the methods herein and those of reference [4] differ interpre-

tationally, roughly the same end result is obtained. That is, one can still

associate an effective fractal dimension in the range D0 ≃ 1.6− 1.8 with the

patterns on the paintings, simply by considering the slope of the entire fit. A

changing slope from box counting does not immediately imply multifractal

behavior.

While it may be that the slope tends to be shallower at lower scales, this

may not be an artifact of the data set so much as a manifestation of estimates

and assumptions about the data. There may also be lower-level resolution

limitations due to the finite size of the pixels. Surely, in the mapping from a

5 metre painting to a 30 cm page – or to a 1000 px binary image – there must

be some significant level of information loss at the lower scales of resolution
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(in both the photograph and the data scanning process).

There does not seem to be significant variation in dimensions between

lighter and darker colors, although in certain cases it is observed that the

lighter pigment patterns tend to exhibit lower fractal dimensions. This could

be due to a different deposition mechanism than simple dripping, as well. It

is perhaps a sweeping generalization to assume that all the pigments were

applied in exactly the same fashion.

So, it becomes somewhat unclear how one can define the “dimension” of

the entire image. This suggests an application of the Fractal Union Theorem

(see e.g. [23]). Since the fractal dimension of the union of fractals
⋃

Fi

has dimension max{Di}, then the fractal dimension of the entire image will

correspond to that of the most complex pattern. Thus, isolation of the

pattern with the highest dimension can be interpreted to characterize the

fractal nature of the entire image. This is consistent with the notion of the

“anchor layer” discussed in references [4] (i.e. the pattern which seems to

strongly influence the dimension of the whole image). However, note that

these authors mention that the overall dimension increases as more patterns

are considered, driving the overall dimension to D ∼ 2. It is unclear what

is meant by this statement, but from a mathematical approach, it seems

contradictory to the associated theorems.

5 Robustness of Analysis Method

The exact determination of the fractal dimensions depends on the cutoff for

the colors under consideration. Thus, there is a certain amount of variability
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in the estimation. To test for further variability (and hence potential limita-

tions of the box counting method applied to such images), P01, Reflections

of the Big Dipper, and Number One 1949 were each rotated by 90◦, and the

corresponding Box and information Dimensions were calculated for a color

radius of RRGB = 20 pixels:

• Blue Poles: D0 = 1.68 ± 0.03; D1 = 1.65 ± 0.02

• Reflections ...: DB = 1.77 ± 0.04; DI = 1.72 ± 0.03

• Number One 1949: DB = 1.73 ± 0.05; DI = 1.70 ± 0.04

These are quite commensurate with the values obtained in Table 2, sub-

ject to the cited error, confirming the rotational invariance of the result.

Pixels are randomly displaced by 5, 10, and 20 positions from their orig-

inal location, and the appropriate dimensions are again calculated for the

same paintings. Table 3 shows the results for the same paintings as above.

6 Fractals in Gestural Expressionism

If the patterns which appear in these paintings truly are the product of phys-

ical processes, rather than pure artistic expressionism, than such structure

should be visible in similar works by other artists. Based on the a simi-

lar analysis to that of Reference [10], it seems reasonable that other images

formed by similar processes should be classifiable by similar statistics.

Roughly contemporaneous with Jackson Pollock, the Québec School Les

Automatistes also produced non–representational art not unlike the drip

paintings studied above. The group was spearheaded by Jean-Paul Riopelle
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and Marcel Barbeau who collectively produced their works over the 35 year

period spanning 1945-1980.

Figure 4 shows a section of a drip painting from Les Automatistes, as

well as the filtered black pigment pattern. Table 4 lists the calculated Box

and information Dimensions for select works by Les Automatistes, subject to

the same selection criteria as before.

As with Pollock’s drip works, the dimensions of the patterns fall roughly

between 1.6 − 1.8. The box and information dimensions do not explicitly

differentiate between Pollock’s work and that of Les Automatistes. In fact,

the difference in the average fractal dimensions for each artists was shown

to be statistically insignificant using a two-way ANOVA in Reference [9].

The lighter colors display mildly lower dimensions than the darker pigments,

although this may be due to cutoff limitations of the filtering process. Similar

behavior was observed in the images by Pollock, so whether or not this is

an actual artifact of the pattern or a numerical effect is a subject for future

investigations.

While this was somewhat the case with Pollock’s works, there are perhaps

sufficient discrepancies to suggest that such a measure could be indicative of

different uses of colors and techniques between these artists. This includes

using lighter colors for balance in an image, versus their use for adding con-

trasting depth.

In any event, the general equivalence of the dimensions of Pollock’s works

and those of Les Automatistes suggests that the utility of this technique as

a “fingerprinting” mechanism for individual artwork/artist association may

be in vain. As with the galaxy clustering models, one could assert that the

17



technique can isolate only construction method, and not structural variation

within the method. Those who are dissuaded by the effective reductionist

implications of the analysis may find comfort herein. In order to further

address this point, the multifractal analysis will be addressed in Section 7.

7 Multifractal Spectrum of Non-Representational

Images

Figure 5 shows the range of generalized dimensions Dq for these patterns.

Note that the overall depth of the generalized dimension spectrum is not

excessive, suggestive that if these patterns can be described by multifractal

statistics, their overall structure is not that extensive. Furthermore, note that

for the majority of the cases considered, there is no appreciable difference in

the range or shape of the spectrum. The errors from the linear fits are

generally of the order 0.05 or less, but these may be underestimates since no

error is introduced for variation in the color. The limiting values of D∞ give

less intuitive insight into the densest clustering regions, unlike in the case of

the three-dimensional sets considered earlier.

Table 5 shows inhomogeneity measure for several Pollock and Automa-

tistes works, defined by Equation (8). In general, the results suggest that

Pollock’s works tend to be “deeper” than those by the Automatistes (i.e.

greater degree of inhomogeneity), perhaps a result of painting styles and re-

finement techniques. This could hint at a potential method of distinction for

the sets of similar classes, but one must be extremely cautious of the selection

criteria for the pattern in question. It is more likely that these measurements
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are simply too “noisy” for any useful approximation.

8 Comparison of Construction Method: Ges-

tural Expressionism versus Artonomy

The utility of the analysis methods contained herein seem limited in the

context of analysis of differing works of the abstract expressionist class. For

the cases considered, the variance in the data seem too small to be of any

particular import for specific identification. However, when applied to other

images, certain differences do arise, enabling one to make distinctions at least

on some level.

In particular, the artwork of Tsion Avital [11] will be considered. In his

seminal work on the subject [11], Avital introduces the concept of Artonomy,

the focal blend of artistic expressionism with scientific order. A complete

description of the intricacies of the method will not be discussed here, and the

interested reader is referred to the aforementioned citation for further details.

The crucial point is that the construction “philosophy” for these images is

strictly different than those of the gestural expressionist class considered

previously.

Avital notes that the concept of Artonomy is based on certain principles

of of “isotropy” in the creation process. There are no preferred sets of colors,

and the use and applications of each color are deemed “equal” in value to

every other. Colors (or elements) are combined into a variety of rigorously-

defined mathematical sets (dubbed “moments”), and the final paintings are

constructed from combinations of these moments subject to the appropriate
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rules. Paints are applied in a simple manner (e.g. controlled brush, or

“toothbrush spray”) and as with the color selection, there is no preferred

method.

The moments are methodically positioned on the canvas in a recursive

fashion quite reminiscent of the basic structure of multifractals (such as, for

example, the framework outlined in Figure 6). Of particular interest is Avi-

tal’s “type γ” moment construction rule [11], which operates on the basis of

information density on the canvas. Here, he defines the density as low when

like colors or hues are assembled (homogeneous elements), and high with

the neighboring placement of contrasting elements (heterogeneous elements).

Avital defines an abstract field as one which is comprised of low density re-

gions, and a concrete field as one composed of high density regions. Abstract

and concrete fields may be inter-mixed to form heterogeneous fields. Images

AV01-03 represent “homogeneous” constructs, while AV04-06 are “heteroge-

neous”.

So, in a sense, comparison of gestural expressionist “structures” with

those of Avital constitutes a contrast in construction methodologies – random

versus algorithmic – and thus Avital’s works can be taken to be a control or

model comparison.

Table 6 shows measured generalized multifractal dimensions for various

color distributions in Avital’s works. It is somewhat difficult to define an

exact base color in the homogeneous images (AV01-03), since the resulting

pattern is due to integrated “aerosol” deposition. In any event, note that

unlike the Pollock and Automatistes images, Avital’s works show no signifi-

cant multiscaling behavior. In many cases, the calculated D∞ is higher than
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D0, yielding a negative ∆0,∞. It should be noted that similar behavior was

observed for some monofractals and simple geometric shapes (i.e. objects

for which there is a single scaling dimension), where the Dq for small q tend

to underestimate the actual dimension. Also, if one considers the associated

statistical error, then these negative values are easily accounted for. Thus, it

can be concluded that Avital’s systemic blobs are devoid of the “rich” struc-

ture with which the gestural expressionists endow their works, due perhaps

in part to the very algorithmic (less random) nature of the construction.

Furthermore, Avital’s homogeneous works (e.g. AV01) were constructed

from the spray of a paint from a toothbrush. Thus, the resulting structure is

probably similar to the deposition from an aerosol source. The dimensional-

ity most likely reflects this mechanism, to a certain extent. Avital’s hetero-

geneous works (AV11, AV12) were constructed with controlled paint brush

strokes. So, these could actually be considered two separate sub-construction

mechanisms.

9 Reconstructing Images From the Multifrac-

tal Spectra

Accurate determination of the multifractal spectra of singularities for a dy-

namical process can yield important information about its construction pro-

cesses and associated constraints. As previously mentioned, the Dq provide

important information about the n-tuple “pair-wise” clustering behavior of

the set, and provide a unique characterization of the object under investiga-

tion.
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The quantities thus obtained can be used as physical constraints to be

used in development of any model, and can perhaps yield interesting infor-

mation about the dynamics of the pattern generator during the construction

phase. Since the multifractal analysis herein seems only to have the ability

to discern one class of structure from another, one must ask whether or not

there is a useful tool to distinguish between like sets. A short analysis is

performed herein on the like image arrays of the abstract expressionist class,

in order to address this problem.

By definition, a multifractal is an inhomogeneous recursive scaling (a

multifractal lattice). Suppose a square (or box, to be consistent with the

current nomenclature) is divided into four sub-units of equal area. Then,

one can describe the relative portion of the pattern contained in each box by

the probabilities r1, r2, r3, and r4 respectively (see Figure 6).

At the next level of recursion, the weights ri are randomly reassigned to

each sub-box of the previous layer, and the process repeats (cascades) down

to any level of recursion desired.

Recall that the generalized dimensions are calculated from the partition

function (5), and furthermore (q − 1)Dq = τ(q). From (7), one can estimate

the difference between two successive cut scales δ and δ/2 (c.f. Figure 6) as

Dq(q − 1) = τ(q) =
∆ log[Z(q, δ)]

∆ log[δ]
, (10)

In terms of the probability ri for each box, this becomes

∆ log[Z(q, δ)]

∆ log[δ]
=

log[
∑

i r
q
i ] − log[

∑

j rq
j

∑

k rq
k]

log[δ] − log[δ/2]
, (11)

which reduces to

Dq(1 − q) =
log[Z(q, δ)]

log(2)
, (12)
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So, one can substitute Z(q, δ) = rq
1 + rq

2 + rq
3 + rq

4 to obtain

rq
1 + rq

2 + rq
3 + rq

4 = 2Dq(1−q) , (13)

and the distribution probabilities ri may be obtained from a system of four

equations. Note that this expression may be simplified, by noting the con-

straint r1 + r2 + r3 + r4 = 1. Furthermore, the q = 2 version of Equation 13

represents the equation of a 4-sphere, whose roots may be easily obtained.

Hence, the system of four equations may be reduced to a system of two

unknowns, in this case r3 and r4. The values of the four possible ri may be

isolated by optimizing the possible values of r3, r4 which fit the measured Dq

spectrum of generalized dimensions. This is achieved by finding sets of ri

for which the individual separations ∆Di = Dcalculated − Dmeasured < ǫ, for

ǫ ∼ 0.0001 on average.

In Table 7, the ri values for various shapes of known monofractal dimen-

sion are presented. Note that for a figure of topological dimension DT = 1

(e.g. the line), the weighting factors suggest that for the appropriate cut

of the plane in Figure 6, the shape will only have a nonzero probability of

being in any two of the 4 sub-boxes, a result which certainly makes sense.

Similarly, a figure of dimension DT = 2, which “fills the plane”, will have

equal probability of being in every box. The negative component for the

Koch Curve (Island) is most likely the result of numerical uncertainty, since

negative probabilities would not make sense. The calculated ris for the Koch

Curve and Sierpinski Gasket can also be interpreted to reflect the construc-

tion algorithms and symmetries for each figure.

Table 8 lists the calculated values of ri for the “anchor layer” pigment

shapes in several of the images considered previously. The values are rela-
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tively consistent for each painting, although this is not a particularly surpris-

ing result, since the Dq spectra themselves are not significantly different.

Each set is characterized by a rather even distribution amongst three of

the boxes, and a fourth which is smaller by an order of magnitude. The

almost homogeneous distribution is no doubt reflective of the fact that the

generalized dimensions are close to 2. It can be shown that for a distribution

with ri = 0.25 for all i, the generalized dimensions all collapse to 2 (or vice

versa).

It may be somewhat discouraging to note that these values are rather close

to one another, and are seemingly indistinguishable. However, it should be

noted that the formalism outlined above is not a singular representation of a

multifractal scaling process. Four quadrants have been used to show recursive

scaling in part for computational efficiency. This could be a significant source

of error if the scaling behavior is radically different than this model requires.

Additionally, this may again be a fundamental problem with the resolution

limitations of the method.

The parameters herein can conceivably be used in the formulation of a

physical model which could reproduce the associated images, at least on a

statistical level. Furthermore, the authors of [5] have studied video record-

ings of Jackson Pollock in his creative process, and have found that the

“fractality” of the overall work took less than a minute to define. Surely, this

provides an additional constraint on a such a cascading model.

On a subjective level, one wonders whether or not the smaller fourth

quadrant could conceivably be interpreted as an imprint of the presence of

the “source” of the image pattern (in this case, the physical presence of
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the artist). That is, at any point during the construction of the painting,

the artist has free choice to paint in three of the four “quadrants” (the last

being occupied by himself). Thus, this could be nested in the recursion,

and detectable by such an analysis. If this explanation were to accurately

represent the evolution of the pattern, it could be used to distinguish between

patterns constructed by humans, and those created by machines or other

natural processes.

10 Visual Multifractals

The analysis in the previous Sections relied predominantly on a color filtering

process dependent on the distance in RGB space of pixel color to its target

“match”. However, many reports suggest that the hierarchical clustering of

the images has some variety of psychological effect on the viewer. While using

RGB primaries as the filtering criteria isolated the physical structure of the

blob, it may not be an effective measure of the perceived structure. Taylor

et al. have recently studied physiological responses to fractal viewing, and

have concluded that observers do exhibit definite responses when presented

with certain fractal patterns [7, 6].

The problem of structure identification and discrimination is not a new

one in psychological circles, nor is it by any means a solved one. Implicitly

related to this topic, the authors of reference [31] discuss the perceptability of

hierarchical structures in abstract or non-representational constructs (whose

subject matter is used in a comparative study in Section 8). In fact, rapid

object recognition and categorization via boundary isolation versus “blob”
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identification is a subject of growing scientific interest (see [32] and related

references therein).

A complete understanding of the nature of color perception is still lacking.

Thus, the notion of a visual fractal is introduced in contrast to those frac-

tals previously considered. Instead of direct observation of colors, the focus

is instead shifted to edge structures. This is effectively an analysis of lumi-

nance gradients within the image, and not directly on the RGB color field

distribution (although the luminance values are determined by R, G, and B

mixes). In fact, after completing this research, the work of references [33]

was discovered. Therein, the authors discuss the potential uses of measuring

the multifractal spectrum of luminance gradients in natural color images, to

determine whether or not it conveys relevant information about the image.

The analysis presented herein is quite similar in these respects, and thus is

not performed without physical justification.

10.1 Luminance Edges as Visual Fractals

While ripe with theory, the actual dynamics of human color visual process-

ing are poorly understood, yet it is clear that one does not require a wealth

of color information to visualize a scene. A subject of ongoing interest (see

e.g. [34] and similar references) is whether or not object/pattern recogni-

tion occurs on the level of “blob” or “edge” identification. Studies of eye

moments in subjects viewing artistic scenes seem to support the notion that

human fixate on particular aspects of an image, supporting the notion that

“blobs” are viewed [35] but it is perhaps unclear as to how these objects are

distinguished.
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Similarly, the images formed by one’s brain may not be fully representa-

tive of the scene which one views. Both chromatic and achromatic informa-

tion received from stimulation of the photopigment receptors in the rods and

cones, are “preprocessed” before being sent to the visual cortex via the optic

nerve.

In a similar vein, it is useful to find a “one-parameter” method of analysis

for such color images, as an attempt to find a suitable way to discriminate

between them. The results of the previous Sections suggest that different

choice of colors yield somewhat differing dimensions, so it would be helpful to

find an element common to all images which is independent of any particular

color. Thus, one can consider analyzing luminance properties of the image.

Edge detection in the visual system occurs on several different levels, al-

though it is not necessarily know which one is “dominant”. One such mech-

anism is known as lateral inhibition (LI). In short, this process measures the

relative excitatory signal output from one photoreceptor with inhibitory sig-

nals from adjacent neighbors, effectively producing a difference output signal

which is sent to the visual cortex. The result is that the strongest excita-

tory signals will be sent from those retinal neurons which detect luminance

changes across the field [27].

Coupled to the visual system’s ability to interpolate information in a

field from missing stimuli (e.g. as with the blind spot), LI can create artificial

luminance and brightness variation effects which are not physically present in

the original scene [27]. For example, a black and white checkerboard will seem

to have greyscale variations across the pattern. The intensity (luminance) of

the central squares is the same in each case, but the square surrounded by
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white appears to be darker than the other (see Figure 7). This exemplifies

the eye’s ability to create artificial variations in scenes which are otherwise

not physically present. Hence, this provides a rather simple example of how

visual interpretation of an object may not be complete commensurate with

the actual physical characteristics.

Lateral inhibition is, however, only one of several mechanisms responsible

for the detection of contrast edges in a visual field. While LI mechanisms

operate in the eye, such detection is known to occur in the visual cortex

itself. Hubel and Wiesel were responsible for the discovery of “orientation

columns” within the visual cortex, cells responsible for the identification of

specific edges or boundaries orientations. The aforementioned researchers

share the 1981 Nobel Prize in Medicine for their research efforts. The inter-

ested reader is directed to reference [36] for an expository account of their

work. Thus, there is sufficient physiological and psychological motivation to

consider possible structural differences in contrast edges.

The transformation from RGB primaries is of the form Y = 0.299 R +

0.587 G+0.114 B [37] (note that the color coordinates must be normalized),

which implies pure white coordinates (R, G, B) = (1.0, 1.0, 1.0). Note the

relatively higher weighting of R and G primaries to B. This is reflective of

the eye’s sensitivity to similar wavelength intensities. In fact, these roughly

correspond to the three basic types of cone cells with similar thresholds, de-

noted as L, M, and S (for long, medium, and short wavelengths). This is

actually one component of a separate CIE color system known as YIQ (the

channels I and Q are encode chromacy information, hue and saturation). The

luminance channel is what one generally associates with greyscale images, an
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in fact is that information which is transmitted in black and white television

signals [37]. Edge detection is performed by generally-available image ma-

nipulation tools, which measure the vector sum of two perpendicular Sobel

gradient operators (see e.g. [38] for more information).

These are perhaps crude approximations to the actual physiological pro-

cesses at hand, so implicit limitations in the estimates should be accordingly

recognized. Certainly, the method does not purport to be a realistic model

of the visual system. It should, however, provide a decent first-pass approx-

imation to any inherent structures and effects therein.

10.2 Pollock vs Les Automatistes

Figure 8 shows a sample edge-detect transform for a images of Pollock and

Les Automatistes, with the associated Dq spectra in Figure 9. For the color-

filter process, the target color in this case is pure white, and the color radius

is taken to be the linear distance away from the point. Thus, for a small

radius, the images with the highest gradients will have the largest dimensions.

Table 9 and 10 give dimensions for both β = 1 and β = 30, which give an

indication of the “value” of the strongest gradients. It should be noted that

since neuronal firings are triggered by threshold-breaking stimuli, a discrete

cutoff is more realistic than a Gaussian drop-off.

The calculated box dimensions for the edge-detected Pollock images tend

to be higher than for the individual blobs, generally D0 > 1.8. This can be

interpreted as implying that the luminance edges form a much more complex

visual field, and that the edge lines are more “space filling”, and providing a

“busier” or “fuller” visual experience.
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When the method is applied to the gestural expressionist works of Les

Automatistes, differences become more apparent (see Figure 9). The box

dimensions for Les Automatistes is generally lower (albeit not much) than

those of Pollock’s. Similar results are obtained for other images (see Table 9).

Note that the measured dimensions do not increase significantly from β = 1

to β = 30.

This suggests that there is a potential visual difference between images

by these different artists. While the final products may resemble each other

at first glance, the intricacies of the two images from a luminance gradient /

visual standpoint appear quite different. Again, in Reference [9] the difference

in average fractal dimension of the “edge” patterns was determined to be

statistically significant.

Based on the work of previous authors [39] and their own survey on pref-

erential response to drip patterns, the authors of [5] conclude that patterns

possessing a fractal dimension of roughly 1.8 are inherently aesthetically-

pleasing to the observer. A follow-up study suggests that “creative individ-

uals” have a preference for high values of D [40]. One could imagine that

this type of perceived structural difference could contribute to an observer’s

“appreciation” of one image or style over another.

10.3 Comparison With Avital

Avital’s definitions of homogeneous and heterogeneous fields (not to be con-

fused with homogeneous fractal distributions), along with the concept of

information content, are a natural extension of the notions of luminance

gradient structures proposed in Section 10.1. In fact, the very notion of
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information content is at the heart of the multifractal formalism. Thus, a

luminance-gradient analysis of Avital’s images should reveal certain proper-

ties about the formulaic construction of the pieces, or at the very least lend

contrast to the more psychological algorithms used by the Abstract Expres-

sionist artists (or perhaps any other artist).

Table 10 shows the effective edge-detection dimensions of various works

by Avital [11], as well as a rough definition of the type of image. Figure 9

shows the associated spectra, in comparison to the previous images. Since

reproduction of every image in this work is not warranted, The previous color

panels demonstrate the general qualities of each type of image (labeled homo-

geneous and heterogeneous), while Figure 10 shows the resulting luminance

gradients. It should be noted that the images classified as “homogeneous” all

conform to Avital’s “S/D/δ” construction algorithm (made from the spray of

a toothbrush) [11], which indeed embodies an inherently smooth transition

to complexity vis-a-vis color selection and application. In contrast, the im-

ages noted as “heterogeneous” are from Avital’s “S/C/γ” algorithm, which

allows for a counterbalance between abstractness and concreteness. These

are simply painted with controlled brush strokes.

The lower dimensions and higher error for the homogeneous images in

Table 10 demonstrate the low color contrast nature of the images, and hence

the shallow depth of luminance variation across the canvas. In particular,

note that while image AV01 is physically a mix of bright pigments, there is

virtually no strong luminance gradient across the canvas (hence to effective

dimension of 0). These dimensions imply there is little “luminance infor-

mation” in the fields. As the images begin to approach heterogeneity, the
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background field is contrasted with patches of color, whose overall bound-

aries are quite regular. This is indicative by the relatively low range of

D0 = 1.1 − 1.3, in contrast to the exceedingly high dimensionality of the

gestural expressionist paintings, as seen in Table 9. The latter is indicative

that the luminance gradients densely fill the canvas for this particular school

or movement, while Avital’s shapes are more concentrated and simple.

Thus, Avital’s homogeneous work is less “interesting” from an edge detect

view than the Pollock or Les Automatistes images considered (there is less

edge information conveyed about the scene), while the heterogeneous work

brings focus to particular objects via these edges (although still with much

lower dimension that the gestural expressionist images).

These results suggest that this analysis method could distinguish between

sources, as well as construction mechanisms of the images. Further investi-

gation would be required. However, whether or not this type of distinction is

possible, identification of such structural signatures could have applications

in external fields. For example, albeit beyond the scope of physics, visual

detection of fractal structure in luminance gradients could have profound

consequences for the fields of aesthetics and visual appreciation of complex

scenes (e.g. what qualities makes an image interesting to us?).

It is interesting to note that Avital himself classified works such as Pol-

lock’s as “moment type ω”, whose paradigm rests on the notion of “arbi-

trariness”, in which the combinations of elements (moments) are scattered

at personal will about the canvas (he further notes these to require “mini-

mal capacity of inventiveness”, and casts Pollock’s art as containing nothing

meaningful or interesting [11]). Avital is careful to note the distinction be-
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tween “arbitrariness” (whose choice of elements is human) and “randomness”

(whose source is instead probabilistic). Unfortunately, Avital presents no

simulations of type-ω, so it is not possible to compare these with the works

of the gestural expressionists considered previously.

11 Potential Limitations of the Method

Of course, the method described herein is not without limitations, and is

only designed to be a “first-order” attack of the issues at hand. As discussed

previously, digital image analysis techniques provide a statistical description

of the entire physical image, with no regard for perceptual interpretations

by observers. The calculated dimensions assumed equal weighting for all

portions of the canvas, when in fact (depending on the distance from which

they view the scene) observers will not register all portions of the field equally.

Both rod and cone cells are unevenly distributed about the retina, with a

disproportionately large number of cones clustered in the fovea centralis [27].

This cone clustering is crucial for perception of color and fine visual detail

via fixation, and is the primary reason for the drop in acuity in peripheral

vision.

So, if the image of interest fills the visual field, only the central-most

regions will convey the largest amount of information. However, this should

not necessarily affect the overall “visual estimation” of the fractal nature of

the piece, although edges may become more blurred (resulting in potential

shifts in a “visual multifractal spectrum”). Furthermore, the method does

not account for other biasing effects such as color blindness, or any visual
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acuity drops (e.g. myopia or other focal abnormalities). The robustness

tests of Section 5 suggest that the dimensionality of patterns will increase for

dispersive patterns (as they should, approaching homogeneity), which could

replicate such vision problems.

Finally, the methods outlined herein do not all complete correspond to

actual physiological processes which occur in the eye. Reference [27] pro-

vides several alternative color space transformations which are perhaps more

appropriate for the actual analysis of cone/photoreceptor excitations from

lightness/luminance and chromatic stimuli. A full investigation and imple-

mentation of these methods is discussed in Reference [28].

12 Concluding Remarks and Future Direc-

tions

The use of fractal and multifractal analysis as a discriminator or fingerprint

method for classifying abstract expressionist art is a budding field. However,

the available results are indicative that the method may well yield promising

results. The fractal signatures obtained from paint blobs are not signifi-

cantly different from one another, implying that this method is not useful

for “authenticating” works by any one particular artist within a movement.

It apparently does differentiate between the movements themselves. This

is similar to the behavior observed in [10], where the multifractal spectrum

was shown to differentiate between galaxy cluster formation mechanisms, but

could not discriminate between instances within the same model. The “edge

multifractal” does yield differentiable results, curiously, which based on as-
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pects of visual processing lends to the interpretation that this could represent

some type of “aesthetic preference”.

One of the motivational questions which inspired the fractal analysis of

gestural expressionist art is: “Does there exist an inherent structure within

the painted patterns which one perceives, and hence yields an unconscious

psychological effect on the observer?”. Rephrased, on can pose the ques-

tion: does the brain possess a mechanism whereby the observer can gain

information from a scene previously unknown to them?

This question certainly addresses the very heart of recognition and learn-

ing methodologies, but unfortunately the exact neural mechanisms which

lead to cognition are not well understood. Recent discoveries in Neuroscience

have paved the way for a potential revolution in this field, however.

Recent studies have revealed striking neural activity in several species of

primates which respond not only to physical imitation of observed movements

by others, but also passive observation of such actions. That is, such neural

firings are indicative that the individual need not repeat the action in order

to cognitively process its meaning – quite literally, a case of “monkey-see,

monkey-do”. Based on these imitation characteristics, such cells have been

dubbed mirror neurons. For a basic introduction, see [41] and references

therein.

Additional studies suggest that mirror neurons may be present in higher

species of primates (and in particular may be central to the development of

language skills in humans [42]). If observation of action can trigger their

firings and initiate comprehension of its meaning, then it may not be unrea-

sonable to expect that observation of the trace of an action can also prompt
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similar neurophysiological responses.

The authors of [5] note that many natural patterns possess multifractal

scaling behavior, but these are not “art” per se. What is the underlying

differentiator, then, that ascribes to these statistically-similar patterns the

label of “art”? Thus, by observing a complex but statistically-ordered scene

such as Pollock’s art, mirror neurons could help to bridge the gap between

the initial visual processing and associative comprehension and appreciation

of the actions required to form the work [43]. Further study into these

hypotheses are currently underway.

Acknowledgments

We gratefully thank Tsion Avital for permission to reproduce his art. This

work made possible by grants from the Natural Sciences and Engineering

Council of Canada (NSERC) and by financial support from the Walter C.

Sumner foundation.

36



References

[1] Gliden. D. L., Schmuckler, M. A., and Clayton, K., Psych. Rev. 100,

460 (1993)

[2] Schmuckler, M. A., and Gliden. D. L., J. Exper. Psych.: Hum. Percep.

Perf. 19, 641 (1993)

[3] Gliden, D. L., “1/f Noise in the Fundamental Forms of Psychology”, UT

Austin Preprint

[4] Taylor, R. P., Micolich, A. P., and Jonas, D., Physics World (October

1999); Nature 399 (3 June 1999); “Splashdown”, New Scientist (25 July

1998);

[5] Taylor, R. P., Micolich, A. P., and Jonas, D., J. Conscious. Stud. 7, 137

(2000)

[6] Spehar, B. et al., Chaos and Graphics 27 813 (2003)

[7] Taylor, R. P. et al., J. Non-lin. Dyn. Psych. and Life Sci. 9 89 (2005)

[8] Mureika, J. R., Topics in Multifractal Analysis of Two- and Three-

Dimensional Structures in Spaces of Constant Curvature, Doctoral The-

sis, University of Toronto Graduate Department of Physics (2001)

[9] Mureika, J. R., Cupchik, G. C., and Dyer, C. C., Leonardo 37 (1),

53–56 (2004)

[10] Mureika, J. R. and Dyer, C. C., Gen. Rel. Grav. 36 (1), 151–184 (2004)

37



[11] Avital, T., Artonomy: Systematic Art, unpublished doctoral thesis

(1974)

[12] Mandelbrot, B. B. The Fractal Geometry of Nature, W. H. Freeman and

co. (1983)

[13] Falconer, K., Fractal Geometry: Mathematical Foundations and Appli-

cations, John Wiley and Sons (1995)

[14] Barnsley, Michael F., Fractals Everywhere (2nd ed.), Academic Press

Professional (1993)

[15] van der Lubbe, J. C., Information Theory, Cambridge University Press

(1997)

[16] Grassberger, P. and Procaccia, I., Physica 9D, 189 (1983)

[17] Hentschel, H. G. E., and Procaccia, I., Physica 8D, 435 (1983)

[18] Grassberger, P., Phys. Lett. 107A, 101 (1985)

[19] Halsey, T. C. et al., Phys. Rev. A33, 1141 (1986)

[20] Jensen, M. H., kadanoff, L. P., Procaccia, I., Phys. Rev. A36, 1409

(1987)

[21] Tél, T., Z. Naturforsch. 43a, 1154 (1988)

[22] Paladin, G. and Vulpiani, A., Phys. Rep. 156, no. 4, 147 (1987)

[23] Vicsek, T., Fractal Growth Phenomena, World Scientific Press, Singa-

pore (1989)

38



[24] Robertson, Bryan, Jackson Pollock, Thames and Hudson Ltd. (1968)

[25] Spring, J., The Essential Jackson Pollock, Andrews McMeel Publishing

(1998)

[26] Gagnon, C. and Gauthier, N. Marcel Babeau: Fugato, Imprimerie Lau-

rentienne, Montréal (1990)

[27] Kaiser, Peter K., and Boynton, Robert M., Human Color Vision (Second

Edition), Optical Society of America (1996)

[28] Mureika, J. R., “Fractal Dimensions in Perceptual Color Space: A Com-

parison Study Using Jackson Pollock’s Art”, submitted to Chaos (2005)

[29] Kaye, b. H., A Random Walk Through Fractal Dimensions, VCH Pub-

lishers (1989)

[30] Pastor-Satorras, R. and Riedi, R. H., J. Phys. A29, L391 (1996)

[31] Avital, T., and Cupchik, G. C., Empirical Studies of the Arts 16, 59

(1998)

[32] Schyns, P. G., and Oliva, A., Psych. Sci. 5 (4), 195 (1994)

[33] Turiel, A. et al., Phys. Rev. Lett. 80, 1098 (1998); Turiel, A. et al.,

Phys. Rev. E 62, 1138 (2000); Turiel, A. et al., Phys. Rev. Lett. 85,

3325 (2000)

[34] Aude, O., and Schyns, P. G., Cog. Psych. 41, 176 (2000)

[35] Yarbus, A. L., Eye Movements and Vision, Plenum Press (1967)

39



[36] Hubel, D. H., Sci. Amer. 209, 54 (1963); Hubel, D. H. and Wiesel, T.

N., Sci. Amer. (September, 1979)

[37] Foley, J., van Dam, A., Feiner, S., and Hughes, J., Computer Graphics:

Principles and Practice (second edition in C), Addison-Wesley Publish-

ing Co. (1996)

[38] Gonzalez, R. C., and Wintz, P., Digital Image Processing (2nd ed.),

Addison-Wesley Publishing Co. (1987)

[39] Pickover, C A., Keys to Infinity, Wiley Press (1995)

[40] Aks, D. J. and Sprott, J. C., Empirical Studies of the Arts 14, 1 (1996)

[41] Arbib, M.A., “The mirror system hypothesis for the language-ready

brain”, in Computational Approaches to the Evolution of Language and

Communication, Cangelosi, A. and Parisi, D. (eds.), Berlin: Springer

Verlag (2001); also “The mirror system, imitation and the evolution

of language”, in Imitation in Animals and Artifacts, Nehaniv, C. and

Dautenhahn, K. (eds.), Cambridge, MA: MIT Press (2002)

[42] Rizzolatti, G. and Arbib, M. A., Trends Neurosci. 21, 188 (1998)

[43] Arbib, M. A., personal communication

40



ID Title (Date) Dimensions (cm2)

P01 Blue Poles (1952) 486.8 × 210

P02 Autumn Rhythm (1950) 525.8 × 266.7

P03 Lavender Mist (1950) 300 × 221

P04 Reflections of the Big Dipper (1947) 111 × 92.1

P05 Number One A 1948 172.7× 264.2

P06 Number One 1949 160 × 259

A01 Au chateau d’Argol (1947) 55 × 50.5

A02 Fièvres (1976) 65 × 80

A03 Tumulte (1973) 81 × 101.5

A04 Voyage au bout du vent (1978) 137 × 188

A05 Suite marocaine no. 1 (1975) 81.3 × 101

A06 La danse et l’espoir (1975) 81.5 × 101

A07 Sans titre, Montréal (1959) 56 × 43

Table 1: Catalog of Jackson Pollock (P01-06) and Les Automatistes (A01-

07) images used in analysis.
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Fit β = 10 20 30

P01 (black)

D0 1.51 (0.05) 1.68 (0.03) 1.72 (0.03)

D1 1.46 (0.02) 1.63 (0.02) 1.67 (0.02)

P01 (red)

D0 1.33 (0.07) 1.54 (0.05) 1.64 (0.04)

D1 1.22 (0.03) 1.42 (0.02) 1.54 (0.02)

P02 (black)

D0 1.66 (0.03) 1.70 (0.03) 1.72 (0.03)

D1 1.66 (0.02) 1.70 (0.02) 1.72 (0.02)

P03 (black)

D0 1.73 (0.06) 1.80 (0.05) 1.84 (0.04)

D1 1.64 (0.05) 1.72 (0.04) 1.76 (0.03)

P04 (black)

D0 1.70 (0.05) 1.77 (0.04) 1.81 (0.04)

D1 1.67 (0.03) 1.73 (0.03) 1.77 (0.03)

P05 (black)

D0 1.72 (0.04) 1.77 (0.04) 1.80 (0.03)

D1 1.65 (0.03) 1.70 (0.02) 1.74 (0.02)

P06 (blue-grey)

D0 1.64 (0.06) 1.73 (0.05) 1.78 (0.04)

D1 1.60 (0.05) 1.68 (0.04) 1.73 (0.03)

P06 (cream)

D0 1.52 (0.10) 1.71 (0.06) 1.76 (0.04)

D1 1.49 (0.08) 1.65 (0.05) 1.70 (0.04)

Table 2: Box (D0) and information (D1) estimates for select Jackson Pollock

paintings.
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Painting β = 5 10 20

Blue Poles 1.70 (0.03) 1.72 (0.02) 1.75 (0.02)

1.65 (0.02) 1.67 (0.02) 1.71 (0.02)

Reflections 1.81 (0.03) 1.84 (0.03) 1.87 (0.02)

1.76 (0.02) 1.79 (0.01) 1.84 (0.01)

Number One 1949 1.76 (0.04) 1.79 (0.03) 1.82 (0.03)

1.72 (0.02) 1.75 (0.02) 1.80 (0.01)

Table 3: DB (top row) and DI (bottom row) measurements for random

pixel displacements of 5, 10, and 20 pixels. Error (in brackets) is that of the

least-squares fit.

Image D0 D1

A01 (black) 1.92 (0.01) 1.88 (0.01)

A02 (black) 1.66 (0.05) 1.61 (0.03)

A02 (blue) 1.67 (0.07) 1.60 (0.01)

A03 (black) 1.69 (0.03) 1.66 (0.01)

A03 (blue) 1.61 (0.06) 1.56 (0.04)

A04 (black) 1.57 (0.07) 1.54 (0.05)

A04 (blue) 1.61 (0.07) 1.53 (0.04)

A05 (black) 1.63 (0.03) 1.61 (0.02)

A05 (green) 1.57 (0.05) 1.47 (0.02)

A06 (black) 1.73 (0.05) 1.65 (0.02)

Table 4: D0 and D1 for various Les Automatistes images, β = 20.

43



Painting D0 D∞ ∆D0,∞

P01 1.68 (0.03) 1.45 (0.05) 0.23 (0.06)

P02 1.70 (0.03) 1.54 (0.04) 0.16 (0.05)

P03 1.80 (0.05) 1.47 (0.03) 0.33 (0.06)

P04 1.77 (0.04) 1.60 (0.04) 0.17 (0.06)

P05 1.77 (0.03) 1.55 (0.05) 0.22 (0.06)

A01 1.92 (0.01) 1.85 (0.03) 0.07 (0.03)

A02 1.66 (0.05) 1.53 (0.05) 0.13 (0.07)

A03 1.68 (0.03) 1.62 (0.05) 0.06 (0.06)

A04 1.57 (0.07) 1.34 (0.05) 0.13 (0.09)

A05 1.63 (0.03) 1.60 (0.07) 0.03 (0.08)

Table 5: Inhomogeneity measure ∆D0,∞ = D0 − D∞ comparison between

Jackson Pollock paintings and Les Automatistes works for anchor layers (β =

20).

Painting D0 D∞ ∆0,∞ Color

AV01 (XI) 1.56 (0.03) 1.51 (0.08) 0.05 (0.09) Grey-green

AV02 (XIII) 1.68 (0.03) 1.71 (0.05) -0.03 (0.06) Yellow

AV03 (XV) 1.61 (0.02) 1.60 (0.09) 0.01 (0.09) Blue

AV04 (III) 1.45 (0.03) 1.38 (0.07) 0.07 (0.08) Red

AV05 (VII) 1.71 (0.02) 1.82 (0.07) -0.09 (0.07) Black

AV06 (VIII) 1.57 (0.04) 1.43 (0.09) 0.14 (0.10) Yellow

Table 6: Generalized dimensions for selected Avital images. Image sources

are identified by Plate number from [11].
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Shape DF r1 r2 r3 r4

Line 1.00 0.00 0.50 0.00 0.50

Plane 2.00 0.25 0.25 0.25 0.25

Koch Island 1.26 -0.05 0.44 0.18 0.43

Sierpinski Gasket 1.57 0.00 0.34 0.32 0.34

Table 7: Distribution probabilities ri for various Euclidean shapes and geo-

metric fractals.

Painting p1 p2 p3 p4

P01 0.03 0.27 0.30 0.40

P02 0.04 0.32 0.32 0.32

P04 0.06 0.32 0.29 0.33

P05 0.03 0.34 0.29 0.34

P06 0.03 0.30 0.29 0.38

A01 0.12 0.30 0.29 0.29

A02 0.02 0.38 0.26 0.34

A03 0.03 0.33 0.32 0.32

A04 0.01 0.41 0.36 0.22

A05 0.01 0.33 0.33 0.33

Table 8: Select distribution probabilities ri for various Jackson Pollock and

Les Automatistes works (anchor layers).
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Painting D0(β = 1) β = 30

P01 1.76 (0.03) 1.78 (0.03)

P02 1.90 (0.02) 1.90 (0.02)

P04 1.89 (0.02) 1.90 (0.01)

P05 1.81 (0.04) 1.84 (0.02)

P06 1.85 (0.03) 1.87 (0.02)

A02 1.54 (0.09) 1.55 (0.05)

A03 1.67 (0.05) 1.72 (0.04)

A04 1.67 (0.05) 1.71 (0.04)

A06 1.56 (0.07) 1.64 (0.06)

A07 1.75 (0.06) 1.80 (0.04)

Table 9: Edge dimensions for selected Pollock (top) and Automatistes (bot-

tom) images, showing higher complexity of luminance gradient patterns for

greyscale distance β = 1, 30.

Painting D0(β = 1) β = 30 Type

AV01 (XI) 0.00 (0.00) 0.00 (0.00) Homogeneous

AV02 (XIII) 0.00 (0.00) 0.00 (0.00) Homogeneous

AV03 (XV) 0.00 (0.00) 0.08 (0.05) Homogeneous

AV04 (III) 0.68 (0.03) 0.83 (0.04) Heterogeneous

AV05 (VII) 0.95 (0.05) 1.04 (0.05) Heterogeneous

AV06 (VIII) 1.28 (0.03) 1.37 (0.04) Heterogeneous

Table 10: Effective edge dimensions for selected Avital images for greyscale

distance β = 1, 30. Image sources are identified by Plate number from [11].
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Figure 1: Black pigment filtered image P02, β ∼ 20.
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Figure 2: Pixel count Npx histogram for black pattern of P04, showing peaks

at (R, G, B) = (21, 17, 21).
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Figure 3: Sample log-log fits used to determine box and information dimen-

sions for P02, beta = 20.
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Figure 4: Sample of Les Automatiste painting and black pigment pattern

(image A05).
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Figure 5: Multifractal dimension spectra for select images of Table 1. Erro

r bars are suppressed for easy viewing.
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Figure 6: Multifractal scaling behavior, showing 1-level reduction of distri-

bution with probabilities r1, r2, r3, and r4.

Figure 7: Black and white checkerboard pattern (“Hermann Grid”) showing

visual luminance structure variation due to edge enhancement effects in the

visual processing system.
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Figure 8: Sample luminance gradients for P02 (left) and A05 (right).
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Figure 9: Dq spectra for luminance gradients of Pollock, Automatistes, and

Avital images (β = 1). The structures are clearly separated by D0 values,

although the overall structure of the curve is similar.
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Figure 10: Sample luminance gradients of images for AV01 (top) and AV06

(bottom).
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