557 research outputs found

    Pterodactyl: The Development and Performance of Guidance Algorithms for a Mechanically Deployed Entry Vehicle

    Get PDF
    Pterodactyl is a NASA Space Technology Mission Directorate (STMD) project focused on developing a design capability for optimal, scalable, Guidance and Control (G&C) solutions that enable precision targeting for Deployable Entry Vehicles (DEVs). This feasibility study is unique in that it focuses on the rapid integration of targeting performance analysis with structural & packaging analysis, which is especially challenging for new vehicle and mission designs. This paper will detail the guidance development and trajectory design process for a lunar return mission, selected to stress the vehicle designs and encourage future scalability. For the five G&C configurations considered, the Fully Numerical Predictor-Corrector Entry Guidance (FNPEG) was selected for configurations requiring bank angle guidance and FNPEG with Uncoupled Range Control (URC) was developed for configurations requiring angle of attack and sideslip angle guidance. Successful G&C configurations are defined as those that can deliver payloads to the intended descent and landing initiation point, while abiding by trajectory constraints for nominal and dispersed trajectories

    A Methane Isolated Planetary Mass Object in Orion

    Full text link
    We report on the discovery of a free-floating methane dwarf toward the direction of the young star cluster sigma Orionis. Based on the object's far-red optical and near-infrared photometry and spectroscopy, we conclude that it is a possible member of this association. We have named it as S Ori J053810.1-023626 (S Ori 70 is the abridged name). If it is a true member of sigma Orionis, the comparison of the photometric and spectroscopic properties of S Ori 70 with state-of-the-art evolutionary models yields a mass of 3 (+5/-1) Jupiter mass for ages between 1 Myr and 8 Myr. The presence of such a low-mass object in our small search area (55.4 sq. arcmin) would indicate a rising substellar initial mass function in the sigma Orionis cluster even for planetary masses.Comment: Accepted for publication in the ApJ. Twelve pages, figures and tables include

    Discovery of a wide companion near the deuterium burning mass limit in the Upper Scorpius association

    Get PDF
    We present the discovery of a companion near the deuterium burning mass limit located at a very wide distance, at an angular separation of 4.6+/-0.1 arcsec (projected distance of ~ 670 AU) from UScoCTIO108, a brown dwarf of the very young Upper Scorpius association. Optical and near-infrared photometry and spectroscopy confirm the cool nature of both objects, with spectral types of M7 and M9.5, respectively, and that they are bona fide members of the association, showing low gravity and features of youth. Their masses, estimated from the comparison of their bolometric luminosities and theoretical models for the age range of the association, are 60+/-20 and 14^{+2}_{-8} MJup, respectively. The existence of this object around a brown dwarf at this wide orbit suggests that the companion is unlikely to have formed in a disk based on current planet formation models. Because this system is rather weakly bound, they did not probably form through dynamical ejection of stellar embryos.Comment: 10 pages, including 4 figures and 2 table

    A deep WISE search for very late type objects and the discovery of two halo/thick-disc T dwarfs : WISE 0013+0634 and WISE 0833+0052

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reservedA method is defined for identifying late-T and Y dwarfs in WISE down to low values of signal-to-noise. This requires a WISE detection only in the W2-band and uses the statistical properties of the WISE multiframe measurements and profile fit photometry to reject contamination resulting from non-point-like objects, variables and moving sources. To trace our desired parameter space, we use a control sample of isolated non-moving non-variable point sources from the Sloan Digital Sky Survey (SDSS), and identify a sample of 158 WISE W2-only candidates down to a signal-to-noise limit of eight. For signal-to-noise ranges >10 and 8-10, respectively, similar to 45 and similar to 90 per cent of our sample fall outside the selection criteria published by the WISE team, mainly due to the type of constraints placed on the number of individual W2 detections. We present follow-up of eight candidates and identify WISE 0013+0634 and WISE 0833+0052, T8 and T9 dwarfs with high proper motion (similar to 1.3 and similar to 1.8 arcsec yr(-1)). Both objects show a mid-infrared/near-infrared excess of similar to 1-1.5 mag and are K band suppressed. Distance estimates lead to space motion constraints that suggest halo (or at least thick disc) kinematics. We then assess the reduced proper motion diagram of WISE ultracool dwarfs, which suggests that late-T and Y dwarfs may have a higher thick-disc/halo population fraction than earlier objects.Peer reviewe

    A New Pleiades Member at the Lithium Substellar Boundary

    Full text link
    We present the discovery of an object in the Pleiades open cluster, named Teide 2, with optical and infrared photometry which place it on the cluster sequence slightly below the expected substellar mass limit. We have obtained low- and high-resolution spectra that allow us to determine its spectral type (M6), radial velocity and rotational broadening; and to detect Hα_\alpha in emission and Li I 670.8 nm in absorption. All the observed properties strongly support the membership of Teide 2 into the Pleiades. This object has an important role in defining the reappearance of lithium below the substellar limit in the Pleiades. The age of the Pleiades very low-mass members based on their luminosities and absence or presence of lithium is constrained to be in the range 100--120 Myr.Comment: 17 pages, 3 figure

    The Substellar Mass Function in sigma Orionis

    Full text link
    We combine results from imaging searches for substellar objects in the sigma Orionis cluster and follow-up photometric and spectroscopic observations to derive a census of the brown dwarf population in a region of 847 arcmin^2. We identify 64 very low-mass cluster member candidates in this region. We have available three color (IZJ) photometry for all of them, spectra for 9 objects, and K photometry for 27% of our sample. These data provide a well defined sequence in the I vs I-J, I-K color magnitude diagrams, and indicate that the cluster is affected by little reddening despite its young age (~5 Myr). Using state-of-the-art evolutionary models, we derive a mass function from the low-mass stars (0.2 Msol) across the complete brown dwarf domain (0.075 Msol to 0.013 Msol), and into the realm of free-floating planetary-mass objects (<0.013 Msol). We find that the mass spectrum (dN/dm ~ m^{-alpha}) increases toward lower masses with an exponent alpha = 0.8+/-0.4. Our results suggest that planetary-mass isolated objects could be as common as brown dwarfs; both kinds of objects together would be as numerous as stars in the cluster. If the distribution of stellar and substellar masses in sigma Orionis is representative of the Galactic disk, older and much lower luminosity free-floating planetary-mass objects with masses down to about 0.005 Msol should be abundant in the solar vicinity, with a density similar to M-type stars.Comment: Accepted for publication in ApJ. 19 pages, 3 figures include

    Two close binaries across the hydrogen-burning limit in the Praesepe open cluster

    Full text link
    We present Keck I/OSIRIS and Keck II/NIRC2 adaptive optics imaging of two member candidates of the Praesepe stellar cluster (d=186.18±\pm0.11 pc; 590-790 Myr), UGC J08451066+2148171 (L1.5±\pm0.5) and UGCS J08301935++2003293 (no spectroscopic classification). We resolved UGCS J08451066++2148171 into a binary system in the near-infrared, with a KK-band wavelength flux ratio of 0.89±\pm0.04, a projected separation of 60.3±\pm1.3 mas (11.2±\pm0.7 au; 1σ\sigma). We also resolved UGCS J08301935++2003293 into a binary system with a flux ratio of 0.46±\pm0.03 and a separation of 62.5±\pm0.9 mas. Assuming zero eccentricity, we estimate minimum orbital periods of ∌\sim100 years for both systems. According to theoretical evolutionary models, we derive masses in the range of 0.074-0.078 M⊙_{\odot} and 0.072-0.076 M⊙_{\odot} for the primary and secondary of UGCS J08451066++2148171 for an age of 700±\pm100 Myr. In the case of UGCS J08301935++2003293, the primary is a low-mass star at the stellar/substellar boundary (0.070-0.078 M⊙_{\odot}) while the companion candidate might be a brown dwarf (0.051-0.065 M⊙_{\odot}). These are the first two binaries composed of L dwarfs in Praesepe. They are benchmark systems to derive the location of the substellar limit at the age and metallicity of Praesepe, determine the age of the cluster based on the lithium depletion boundary test, derive dynamical masses, and improve low-mass stellar and substellar evolutionary models at a well-known age and metallicity.Comment: 12 pages, 5 figures, 3 tables, accepted for publication in MNRA

    Space Velocities of L- and T-type Dwarfs

    Get PDF
    (Abridged) We have obtained radial velocities of a sample of 18 ultracool dwarfs (M6.5-T8) using high-resolution, near-infrared spectra obtained with NIRSPEC and the Keck II telescope. We have confirmed that the radial velocity of Gl 570 D is coincident with that of the K-type primary star Gl 570 A, thus providing additional support for their true companionship. The presence of planetary-mass companions around 2MASS J05591914-1404488 (T4.5V) has been analyzed using five NIRSPEC radial velocity measurements obtained over a period of 4.37 yr. We have computed UVW space motions for a total of 21 L and T dwarfs within 20 pc of the Sun. This population shows UVW velocities that nicely overlap the typical kinematics of solar to M-type stars within the same spatial volume. However, the mean Galactic (44.2 km/s) and tangential (36.5 km/s) velocities of the L and T dwarfs appear to be smaller than those of G to M stars. A significant fraction (~40%) of the L and T dwarfs lies near the Hyades moving group (0.4-2 Gyr), which contrasts with the 10-12% found for earlier-type stellar neighbors. Additionally, the distributions of all three UVW components (sigma_{UVW} = 30.2, 16.5, 15.8 km/s) and the distributions of the total Galactic (sigma_{v_tot} = 19.1 km/s) and tangential (sigma_{v_t} = 17.6 km/s) velocities derived for the L and T dwarf sample are narrower than those measured for nearby G, K, and M-type stars, but similar to the dispersions obtained for F stars. This suggests that, in the solar neighborhood, the L- and T-type ultracool dwarfs in our sample (including brown dwarfs) is kinematically younger than solar-type to early M stars with likely ages in the interval 0.5-4 Gyr.Comment: Accepted for publication in Ap

    A Search for Very Low-mass Stars and Brown Dwarfs in the Young sigma Orionis Cluster

    Full text link
    We present a CCD-based photometric survey covering 870 sq. arcmin in a young stellar cluster around the young multiple star sigma Orionis. Our survey limiting R, I, and Z magnitudes are 23.2, 21.8, and 21.0, respectively. From our colour-magnitude diagrams, we have selected 49 faint objects, which smoothly extrapolate the photometric sequence defined by more massive known members. Adopting the currently accepted age interval of 2-10 Myr for the Orion 1b association and considering recent evolutionary models, our objects may span a mass range from 0.1 down to 0.02 Msun, well within the substellar regime. Follow-up low-resolution optical spectroscopy (635-920 nm) for eight of our candidates (I=16-19.5) shows that they have spectral types M6-M8.5 which are consistent with the expectations for true members. Compared with their Pleiades counterparts of similar types, Halpha emission is generally stronger, while NaI and KI absorption lines appear weaker, as expected for lower surface gravities and younger ages. Additionally, TiO bands and in particular VO bands appear clearly enhanced in our candidate with the latest spectral type, SOri 45 (M8.5, I=19.5), compared to objects of similar types in older clusters and the field. We have estimated the mass of this candidate at only 0.020-0.040 Msun, hence it is one of the least massive brown dwarfs yet discovered. We also discuss in this paper the potential role of deuterium as a tracer of both substellar nature and age in very young clusters.Comment: Accepted for publication in ApJ Main Journal. 32 pages of text and tables + 9 pages of figures. Figures 3a and 3b (gif format) provided separatel
    • 

    corecore