420 research outputs found

    Versatile Coordination of Cyclopentadienyl-Arene Ligands and Its Role in Titanium-Catalyzed Ethylene Trimerization

    Get PDF
    Cationic titanium(IV) complexes with ansa-(η5-cyclopentadienyl,η6-arene) ligands were synthesized and characterized by X-ray crystallography. The strength of the metal-arene interaction in these systems was studied by variable-temperature NMR spectroscopy. Complexes with a C1 bridge between the cyclopentadienyl and arene moieties feature hemilabile coordination behavior of the ligand and consequently are active ethylene trimerization catalysts. Reaction of the titanium(IV) dimethyl cations with CO results in conversion to the analogous cationic titanium(II) dicarbonyl species. Metal-to-ligand backdonation in these formally low-valent complexes gives rise to a strongly bonded, partially reduced arene moiety. In contrast to the η6-arene coordination mode observed for titanium, the more electron-rich vanadium(V) cations [cyclopentadienyl-arene]V(NiPr2)(NC6H4-4-Me)+ feature η1-arene binding, as determined by a crystallographic study. The three different metal-arene coordination modes that we experimentally observed model intermediates in the cycle for titanium-catalyzed ethylene trimerization. The nature of the metal-arene interaction in these systems was studied by DFT calculations.

    Bonding in complexes of bis(pentalene)di-titanium, Ti2(C8H6)2

    Get PDF
    Bonding in the bis(pentalene)di-titanium ‘double-sandwich’ species Ti2Pn2 (Pn = C8H6) and its interaction with other fragments have been investigated by xdensity functional calculations and fragment analysis. Ti2Pn2 with C2v symmetry has two metal-metal bonds and a low-lying metal based empty orbital, all three frontier orbitals having a1 symmetry. The latter may be regarded as being derived by symmetric combinations of the classic three frontier orbitals of two bent bis(cyclopentadienyl) metal fragments. Electrochemical studies on Ti2Pn†2 (Pn† = C8H4{SiiPr3-1,4}2) reveal a one-electron oxidation, and the formally mixed-valence Ti(II)-Ti(III) cationic complex [Ti2Pn†2][B(C6F5)4] has been structurally characterised. Theory indicates an S = Âœ ground state electronic configuration for the latter, confirmed by EPR spectroscopy and SQUID magnetometry. Carbon dioxide binds symmetrically to Ti2Pn2 preserving C2v symmetry, as does carbon disulfide. The dominant interaction in Ti2Pn2CO2 is σ donation into the LUMO of bent CO2 and donation from the O atoms to Ti2Pn2 is minimal, whereas in Ti2Pn2CS2 there is significant interaction with the S atoms. The bridging O atom in the mono(oxo) species Ti2Pn2O, however, employs all three O 2p orbitals in binding and competes strongly with Pn, leading to weaker binding of the carbocyclic ligand, and the sulfur analog Ti2Pn2S behaves similarly. Ti2Pn2 is also capable of binding one, two and three molecules of carbon monoxide. The bonding demands of a single CO molecule are incompatible with symmetric binding and an asymmetric structure is found. The dicarbonyl adduct Ti2Pn2(CO)2 has Cs symmetry with the Ti2Pn2 unit acting as two MCp2 fragments. Synthetic studies show, that in the presence of excess CO a tricarbonyl complex Ti2Pn†2(CO)3 is formed, which optimises to an asymmetric structure with two terminal CO ligands and one semi-bridging. Low temperature 13C NMR spectroscopy reveals a rapid dynamic exchange between the two bound CO sites and free CO

    Lewis Base Mediated ÎČ-Elimination and Lewis Acid Mediated Insertion Reactions of Disilazido Zirconium Compounds

    Get PDF
    The reactivity of a series of disilazido zirconocene complexes is dominated by the migration of anionic groups (hydrogen, alkyl, halide, OTf) between the zirconium and silicon centers. The direction of these migrations is controlled by the addition of two-electron donors (Lewis bases) or two-electron acceptors (Lewis acids). The cationic nonclassical [Cp2ZrN(SiHMe2)2]+ ([2]+) is prepared from Cp2Zr{N(SiHMe2)2}H (1) and B(C6F5)3 or [Ph3C][B(C6F5)4], while reactions of B(C6F5)3 and Cp2Zr{N(SiHMe2)2}R (R = Me (3), Et (5), n-C3H7 (7), CH═CHSiMe3 (9)) provide a mixture of [2]+ and [Cp2ZrN(SiHMe2)(SiRMe2)]+. The latter products are formed through B(C6F5)3 abstraction of a ÎČ-H and R group migration from Zr to the ÎČ-Si center. Related ÎČ-hydrogen abstraction and X group migration reactions are observed for Cp2Zr{N(SiHMe2)2}X (X = OTf (11), Cl (13), OMe (15), O-i-C3H7 (16)). Alternatively, addition of DMAP (DMAP = 4-(dimethylamino)pyridine) to [2]+ results in coordination to a Si center and hydrogen migration to zirconium, giving the cationic complex [Cp2Zr{N(SiHMe2)(SiMe2DMAP)}H]+ ([19]+). Related hydrogen migration occurs from [Cp2ZrN(SiHMe2)(SiMe2OCHMe2)]+ ([18]+) to give [Cp2Zr{N(SiMe2DMAP)(SiMe2OCHMe2)}H]+ ([22]+), whereas X group migration is observed upon addition of DMAP to [Cp2ZrN(SiHMe2)(SiMe2X)]+ (X = OTf ([12]+), Cl ([14]+)) to give [Cp2Zr{N(SiHMe2)(SiMe2DMAP)}X]+ (X = OTf ([26]+), Cl ([20]+)). The species involved in these transformations are described by resonance structures that suggest ÎČ-elimination. Notably, such pathways are previously unknown in early metal amide chemistry. Finally, these migrations facilitate direct Si–H addition to carbonyls, which is proposed to occur through a pathway that previously had been reserved for later transition metal compounds

    Heterodinuclear titanium/zinc catalysis: synthesis, characterization and activity for CO2/epoxide copolymerization and cyclic ester polymerization

    Get PDF
    The preparation of heterodinuclear complexes, especially those comprising early-late transition metals coordinated by a simple or symmetrical ancillary ligand, represents a fundamental challenge and an opportunity to prepare catalysts benefitting from synergic properties. Here, two new mixed titanium(IV)-zinc(II) complexes, [LTi(OiPr)2ZnEt] and[LTi(OiPr)2ZnPh], both coordinated by a diphenolate tetra(amine) macrocyclic ligand (L), are prepared. The synthesis benefits from the discovery that reaction of the ligand with a single equivalent of titanium tetrakis(iso-propoxide) allows the efficient formation of a mono-Ti(IV) complex, [LTi(OiPr)2]. All new complexes are characterized by a combination of single crystal X-ray diffraction, multinuclear NMR spectroscopy and mass spectrometry techniques. The two heterobimetallic complexes, [LTi(OiPr)2ZnEt] and [LTi(OiPr)2ZnPh], feature trianionic coordination by the macrocyclic ligand and bridging alkoxide groups coordinate to both the different metal centres. The heterodinuclear catalysts are compared to the mono-titanium analogue, [LTi(OiPr)2], in various polymerization reactions. In the alternating copolymerizations of carbon dioxide and cyclohexene oxide, the mono-titanium complex is totally inactive whilst the heterodinuclear complexes show moderate activity (TOF = 3 h-1); it should be noted the activity is measured using just 1 bar pressure of carbon dioxide. In the ring opening polymerization of lactide and Δ-caprolactone, the mono-Ti(IV) complex is totally inactive whilst the heterodinuclear complexes show moderate-high activities, qualified by comparison to other known titanium polymerization catalysts (L-lactide, kobs = 11 x 10-4 s-1 at 70 °C, 1 M in [lactide]) and Δ-caprolactone (kobs = 5 x 10-4 s-1 at 70 °C, 0.9 M in [Δ-caprolactone])

    Unprecedented High-Modulus High-Strength Tapes and Films of Ultrahigh Molecular Weight Polyethylene via Solvent-Free Route

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Macromolocules, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see: http://dx.doi.org/10.1021/ma200667
    • 

    corecore