154 research outputs found
Adsorption and STM imaging of polycyclic aromatic hydrocarbons on graphene
International audienceThe structural characterization of polycyclic aromatic hydrocarbon molecules adsorbed on graphene is of fundamental importance in view of the use of graphene or graphene nanoribbons for electronic applications. Before reaching this point, one has to determine the structure of the adsorbed molecules. Here, we study the case of benzene, coronene, and hexabenzocoronene on a graphene layer. First, the adsorption properties of single molecules are calculated using first-principles calculations at the level of density functional theory. We benefit from a recent scheme, particularly adapted for weakly adsorbed molecules, allowing us to precisely calculate the van der Waals contribution. Then, scanning tunneling microscopy (STM) is used to produce images of self-assembled molecules comparing different theoretical approaches to experimental observations. Finally, we consider the imaging of isolated molecules, and we show how the STM tip influences the molecule position by soft mechanical interaction during the scanning process
Surface Screening Charge and Effective Charge
The charge on an atom at a metallic surface in an electric field is defined
as the field-derivative of the force on the atom, and this is consistent with
definitions of effective charge and screening charge. This charge can be found
from the shift in the potential outside the surface when the atoms are moved.
This is used to study forces and screening on surface atoms of Ag(001)
c -- Xe as a function of external field. It is found that at low
positive (outward) fields, the Xe with a negative effective charge of -0.093
is pushed into the surface. At a field of 2.3 V \AA the charge
changes sign, and for fields greater than 4.1 V \AA the Xe experiences
an outward force. Field desorption and the Eigler switch are discussed in terms
of these results.Comment: 4 pages, 1 figure, RevTex (accepted by PRL
Theoretical Atomic-Force-Microscopy Study Of Adsorbed Fullerene Molecules
The capability of atomic-force microscopy (AFM) to localize both individual adsorbates and aggregates of adsorbed molecules was demonstrated a few years ago. More recently submonolayers of fullerene molecules deposited on a gold Substrate have been imaged using such devices. In this paper, simulations of the atomic force between a thin probe tip and a set of adsorbed molecules is presented. The long-range part of the interaction is determined from a whole self-consistent procedure in which many-body effects are accounted for at all orders. In this description the probe tip interacts with the molecules and the surface through many-body dispersion forces. Short-range interactions are then included by using an atom-atom semiempirical pairwise potential. Simulations of AFM images of C-60 adsorbed molecules are presented in two different modes of imaging: the constant-tip-height mode and the constant-force mode
Detection of Wolbachia in the Tick Ixodes ricinus is Due to the Presence of the Hymenoptera Endoparasitoid Ixodiphagus hookeri
The identification of micro-organisms carried by ticks is an important issue for human and animal health. In addition to their role as pathogen vectors, ticks are also the hosts for symbiotic bacteria whose impact on tick biology is poorly known. Among these, the bacterium Wolbachia pipientis has already been reported associated with Ixodes ricinus and other tick species. However, the origins of Wolbachia in ticks and their consequences on tick biology (known to be very diverse in invertebrates, ranging from nutritional symbionts in nematodes to reproductive manipulators in insects) are unknown. Here we report that the endoparasitoid wasp Ixodiphagus hookeri (Hymenoptera, Chalcidoidea, Encyrtidae) â strictly associated with ticks for their development - is infested at almost 100% prevalence by a W. pipientis strain belonging to a Wolbachia supergroup that has already been reported as associated with other hymenopteran parasitoids. In a natural population of I. ricinus that suffers high parasitism rates due to I. hookeri, we used specific PCR primers for both hymenopteran and W. pipientis gene fragments to show that all unfed tick nymphs parasitized by I. hookeri also harbored Wolbachia, while unparasitized ticks were Wolbachia-free. We demonstrated experimentally that unfed nymphs obtained from larvae exposed to I. hookeri while gorging on their vertebrate host also harbor Wolbachia. We hypothesize that previous studies that have reported W. pipientis in ticks are due to the cryptic presence of the endoparasitoid wasp I. hookeri. This association has remained hidden until now because parasitoids within ticks cannot be detected until engorgement of the nymphs brings the wasp eggs out of diapause. Finally, we discuss the consequences of this finding for our understanding of the tick microbiome, and their possible role in horizontal gene transfer among pathogenic and symbiotic bacteria
Manipulating the Conformation of Single Organometallic Chains on Au(111)
The conformations of organometallic polymers formed via the bottom-up assembly of monomer units on a metal surface are investigated, and the relationship between the adsorption geometry of the individual monomer units, the conformational structure of the chain, and the overall shape of the polymer is explored. Iodine-functionalized monomer units deposited on a Au(111) substrate are found to form linear chain structures in which each monomer is linked to its neighbors via a Au adatom. Lateral manipulation of the linear chains using a scanning tunneling microscope allows the structure of the chain to be converted from a linear to a curved geometry, and it is shown that a transformation of the overall shape of the chain is coupled to a conformational rearrangement of the chain structure as well as a change in the adsorption geometry of the monomer units within the chain. The observed conformational structure of the curved chain is well-ordered and distinct from that of the linear chains. The structures of both the linear and curved chains are investigated by a combination of scanning tunneling microscopy measurements and theoretical calculations
DUX4c Is Up-Regulated in FSHD. It Induces the MYF5 Protein and Human Myoblast Proliferation
Facioscapulohumeral muscular dystrophy (FSHD) is a dominant disease linked to contractions of the D4Z4 repeat array in 4q35. We have previously identified a double homeobox gene (DUX4) within each D4Z4 unit that encodes a transcription factor expressed in FSHD but not control myoblasts. DUX4 and its target genes contribute to the global dysregulation of gene expression observed in FSHD. We have now characterized the homologous DUX4c gene mapped 42 kb centromeric of the D4Z4 repeat array. It encodes a 47-kDa protein with a double homeodomain identical to DUX4 but divergent in the carboxyl-terminal region. DUX4c was detected in primary myoblast extracts by Western blot with a specific antiserum, and was induced upon differentiation. The protein was increased about 2-fold in FSHD versus control myotubes but reached 2-10-fold induction in FSHD muscle biopsies. We have shown by Western blot and by a DNA-binding assay that DUX4c over-expression induced the MYF5 myogenic regulator and its DNA-binding activity. DUX4c might stabilize the MYF5 protein as we detected their interaction by co-immunoprecipitation. In keeping with the known role of Myf5 in myoblast accumulation during mouse muscle regeneration DUX4c over-expression activated proliferation of human primary myoblasts and inhibited their differentiation. Altogether, these results suggested that DUX4c could be involved in muscle regeneration and that changes in its expression could contribute to the FSHD pathology
Removal of trace organics by MBR treatment: The role of molecular properties
This study examined the relationship between specific molecular features of trace organic contaminants and their removal efficiencies by a laboratory scale membrane bioreactor (MBR). Removal efficiencies of 40 trace organic compounds were assessed under stable operating conditions. The reported results demonstrate an apparent correlation between chemical structures and the removal of trace organic contaminants by the laboratory scale MBR system. The removal of all 14 very hydrophobic (Log D \u3e 3.2) trace organic compounds selected in this study was consistently high and was above 85%. The occurrence and types of electron withdrawing or donating functional groups appear to be important factors governing their removal by MBR treatment. In this study, all hydrophilic and moderately hydrophobic (Log D \u3c 3.2) compounds possessing strong electron withdrawing functional groups showed removal efficiency of less than 20%. In contrast, high removal efficiencies were observed with most compounds bearing electron donating functional groups such as hydroxyl and primary amine groups. A qualitative framework for the assessment of trace organic removal by MBR treatment was proposed to provide further insights into the removal mechanisms
- âŠ