3,057 research outputs found

    Crude oil desulfurization

    Get PDF
    High sulfur crude oil is desulfurized by a low temperature (25-80 C.) chlorinolysis at ambient pressure in the absence of organic solvent or diluent but in the presence of water (water/oil=0.3) followed by a water and caustic wash to remove sulfur and chlorine containing reaction products. The process described can be practiced at a well site for the recovery of desulfurized oil used to generate steam for injection into the well for enhanced oil recovery

    Coal desulfurization by low temperature chlorinolysis, phase 1

    Get PDF
    The reported activity covers laboratory scale experiments on twelve bituminous, sub-bituminous and lignite coals, and preliminary design and specifications for bench-scale and mini-pilot plant equipment

    TB25: The Effect of Stand Factors on the Productivity of Wheeled Skidders in Eastern Maine

    Get PDF
    The objective of this study was to determine what forest stand factors, as they constitute a set of operating conditions, affect skidder and skidder crew productivity and the degree of their effect.https://digitalcommons.library.umaine.edu/aes_techbulletin/1164/thumbnail.jp

    Fluvial Geomorphologic and Hydrodynamic Assessment in the Tidal Portion of the Lower Rio Grande River, US-Mexico Borderland

    Get PDF
    With fast population growth and economic development in the US-Mexico Borderland, water diversion and usages has reduced the flow substantially in the Low Rio Grande River (LRGR). Tidal portion of the LRGR has posed an environmental drought issue since 1993 and the channel clogged with the invasion of non-native plants also causes environmental problems. As a result of the intensity of these natural and manmade factors, the Rio Grande stopped flowing to the sea in February 2001. The flows were reduced to a point that they were unable to push out the sand deposited at the mouth. Geomorphologic evolution in association with the fluvial process of the LRGR has received wide attention. The purpose of this study is to investigate the necessary flow to maintain the river mouth open to the Gulf of Mexico using integrated approach of remote sensing and numerical analysis. It also sheds lights on possible solutions in decision-making. The analysis starts with a geomorphologic analysis using satellite remote sensing imagery and historic flow rate assessment, followed by a two-dimensional, depth averaged, finite element numerical modeling analysis to simulate the hydrodynamics of the tidal portion of the LRGR. While Landsat 7 Enhanced Thematic Mapper Plus (ETM+) satellite imagery and Digital Orthophoto Quadrangles (DOQs) were used for the geomorphologic investigation, Research Management Associates (RMA-2) software and Surface Water Modeling System (SMS 8.0) were used for minimum stream flow rate analysis. Alternative geomorphic conditions were modeled and compared to the original case, where two simulation runs were established. The first one was designed in dealing with a more refined mesh; and the second was prepared for handling an increased discharge at the inflow boundary along with the investigation of shear stress. The study concludes that the peak shear stress increased with increasing discharge towards the mouth of the river and a 1.27 m3/s discharge is necessary to maintain the opening of the river mouth

    Fluvial Geomorphologic and Hydrodynamic Assessment in the Tidal Portion of the Lower Rio Grande River, US-Mexico Borderland

    Get PDF
    With fast population growth and economic development in the US-Mexico Borderland, water diversion and usages has reduced the flow substantially in the Low Rio Grande River (LRGR). Tidal portion of the LRGR has posed an environmental drought issue since 1993 and the channel clogged with the invasion of non-native plants also causes environmental problems. As a result of the intensity of these natural and manmade factors, the Rio Grande stopped flowing to the sea in February 2001. The flows were reduced to a point that they were unable to push out the sand deposited at the mouth. Geomorphologic evolution in association with the fluvial process of the LRGR has received wide attention. The purpose of this study is to investigate the necessary flow to maintain the river mouth open to the Gulf of Mexico using integrated approach of remote sensing and numerical analysis. It also sheds lights on possible solutions in decision-making. The analysis starts with a geomorphologic analysis using satellite remote sensing imagery and historic flow rate assessment, followed by a two-dimensional, depth averaged, finite element numerical modeling analysis to simulate the hydrodynamics of the tidal portion of the LRGR. While Landsat 7 Enhanced Thematic Mapper Plus (ETM+) satellite imagery and Digital Orthophoto Quadrangles (DOQs) were used for the geomorphologic investigation, Research Management Associates (RMA-2) software and Surface Water Modeling System (SMS 8.0) were used for minimum stream flow rate analysis. Alternative geomorphic conditions were modeled and compared to the original case, where two simulation runs were established. The first one was designed in dealing with a more refined mesh; and the second was prepared for handling an increased discharge at the inflow boundary along with the investigation of shear stress. The study concludes that the peak shear stress increased with increasing discharge towards the mouth of the river and a 1.27 m(3)/s discharge is necessary to maintain the opening of the river mouth

    Neutrino Masses and Leptogenesis with Heavy Higgs Triplets

    Get PDF
    A simple and economical extension of the minimal standard electroweak gauge model (without right-handed neutrinos) by the addition of two heavy Higgs scalar triplets would have two significant advantages. \underline {Naturally} small Majorana neutrino masses would become possible, as well as leptogenesis in the early universe which gets converted at the electroweak phase transition into the present observed baryon asymmetry.Comment: 12 pages including one figur
    corecore