4,663 research outputs found
Dynamic range and mass accuracy of wide-scan direct infusion nanoelectrospray fourier transform ion cyclotron resonance mass spectrometry-based metabolomics increased by the spectral stitching method
Direct infusion nanoelectrospray Fourier transform ion cyclotron resonance mass spectrometry (DI nESI FT-ICR MS)offers high mass accuracy and resolution for analyzing complex metabolite mixtures. High dynamic range across a wide mass range, however, can only be achieved at the expense of mass accuracy, since the large numbers of ions entering the ICR detector induce adverse spacecharge effects. Here we report an optimized strategy for wide-scan DI nESI FT-ICR MS that increases dynamic range but maintains high mass accuracy. It comprises the collection if multiple adjacent selected ion monitoring (SIM) windows that are stitched together using novel algorithms. The final SIM-stitching method, derived from several optimization experiments, comprises 21 adjoining SIM windows each of width m/z 30 (from m/z 70 to 500; adjacent windows overlap by m/z 10) with an automated gain control (AGC) target of 1 105 charges. SIMstitching and wide-scan range (WSR; Thermo Electron)were compared using a defined standard to assess mass accuracy and a liver extract to assess peak count and dynamic range. SIM-stitching decreased the maximum mass error by 1.3- and 4.3-fold, and increased the peak count by 5.3- and 1.8-fold, versus WSR (AGC targets of 1 x 105 and 5 x 105, respectively). SIM-stitching achieved an rms mass error of 0.18 ppm and detected over 3000 peaks in liver extract. This novel approach increases metabolome coverage, has very high mass accuracy, and at 5.5 min/sample is conducive for high- throughput metabolomics
Spatially Resolved Galaxy Star Formation and its Environmental Dependence I
We use the photometric information contained in individual pixels of 44,964
(0.019<z<0.125 and -23.5<M_r<-20.5) galaxies in the Fourth Data Release (DR4)
of the Sloan Digital Sky Survey to investigate the effects of environment on
galaxy star formation (SF). We use the pixel-z technique, which combines
stellar population synthesis models with photometric redshift template fitting
on the scale of individual pixels in galaxy images. Spectral energy
distributions are constructed, sampling a wide range of properties such as age,
star formation rate (SFR), dust obscuration and metallicity. By summing the
SFRs in the pixels, we demonstrate that the distribution of total galaxy SFR
shifts to lower values as the local density of surrounding galaxies increases,
as found in other studies. The effect is most prominent in the galaxies with
the highest star formation, and we see the break in the SFR-density relation at
a local galaxy density of (Mpc/h). Since our method
allows us to spatially resolve the SF distribution within galaxies, we can
calculate the mean SFR of each galaxy as a function of radius. We find that on
average the mean SFR is dominated by SF in the central regions of galaxies, and
that the trend for suppression of SFR in high density environments is driven by
a reduction in this nuclear SF. We also find that the mean SFR in the outskirts
is largely independent of environmental effects. This trend in the mean SFR is
shared by galaxies which are highly star forming, while those which are weakly
star forming show no statistically significant correlation between their
environment and the mean SFR at any radius.Comment: 37 pages, 11 figures. Referee's comments included and matches version
accepted for publication in the Astrophysical Journal. For high resolution
figures, see http://www.phyast.pitt.edu/~welikala/pixelz/paper1
Accurate Mental Maps as an Aspect of Local Ecological Knowledge (LEK): A Case Study from Lough Neagh, Northern Ireland
A mental map of the substrate of Lough Neagh, Northern Ireland, compiled from interviews with local fishermen, is compared with maps produced by science-based techniques. The comparison reveals that the mental map is highly accurate. This finding contrasts with the spatial distortion characteristic of the classic mental map. The accuracy of the Lough Neagh map is attributed to the fact that it is a compendium of the knowledge of several generations, rather than an individual perception. Individual distortions are filtered out, and accuracy is promoted by economic self-interest. High accuracy may be characteristic of the mental maps held by artisanal exploiters of natural resources
Improved fidelity of triggered entangled photons from single quantum dots
We demonstrate the on-demand emission of polarisation-entangled photon pairs
from the biexciton cascade of a single InAs quantum dot embedded in a GaAs/AlAs
planar microcavity. Improvements in the sample design blue shifts the wetting
layer to reduce the contribution of background light in the measurements.
Results presented show that >70% of the detected photon pairs are entangled.
The high fidelity of the (|HxxHx>+|VxxVx>)/2^0.5 state that we determine is
sufficient to satisfy numerous tests for entanglement. The improved quality of
entanglement represents a significant step towards the realisation of a
practical quantum dot source compatible with applications in quantum
information.Comment: 9 pages. Paper is available free of charge at
http://www.iop.org/EJ/abstract/1367-2630/8/2/029/, see also 'A semiconductor
source of triggered entangled photon pairs', R. M. Stevenson et al., Nature
439, 179 (2006
Increasing age and tear size reduce rotator cuff repair healing rate at 1 year : Data from a large randomized controlled trial
Peer reviewedPublisher PD
Phenotypic plasticity determines differences between the skulls of tigers from mainland Asia
Tiger subspecific taxonomy is controversial because of morphological and genetic variation found between now fragmented populations, yet the extent to which phenotypic plasticity or genetic variation affects phenotypes of putative tiger subspecies has not been explicitly addressed. In order to assess the role of phenotypic plasticity in determining skull variation, we compared skull morphology among continental tigers from zoos and the wild. In turn, we examine continental tiger skulls from across their wild range, to evaluate how the different environmental conditions experienced by individuals in the wild can influence morphological variation. Fifty-seven measurements from 172 specimens were used to analyse size and shape differences among wild and captive continental tiger skulls. Captive specimens have broader skulls, and shorter rostral depths and mandible heights than wild specimens. In addition, sagittal crest size is larger in wild Amur tigers compared with those from captivity, and it is larger in wild Amur tigers compared with other wild continental tigers. The degree of phenotypic plasticity shown by the sagittal crest, skull width and rostral height suggests that the distinctive shape of Amur tiger skulls compared with that of other continental tigers is mostly a phenotypically plastic response to differences in their environments
Evolution of the BeachâDune Systems in Mediterranean Andalusia (Spain) Using Two Different Proxies
Coastal environments are complex systems that are influenced by a combination of natural
processes and human activities. Scientific interest in the effects of coastal erosion/accretion and
climatic change-related processes has greatly increased in recent decades due to the growing human
development along coastal areas. This paper investigates the state and evolution of beachâdune
systems for the 1977â2001 and 2001â2019 periods of the Mediterranean coast of Andalusia (Spain)
using two different proxies: the dune toe line, which was used to track foredunes evolution, and the
high-water line, which was used to assess shoreline evolution. Results showed a general erosional
behavior of the studied beachâdune systems and identified cases where the main trend was altered
through human interventions. During the 1977â2001 period, foredunes essentially showed erosion
(54%), accretion (24%), and stability (22%) and shorelines showed accretion (40%) and erosion and
stability (34% each). During the 2001â2019 period, foredunes essentially showed erosion (42%),
stability (30%), and accretion (28%), and shorelines showed erosion (40%), accretion (34%), and
stability (26%). Combining the evolution classes of each proxy (dune toe/shoreline) allows the
behavior of both shoreline proxies to be assessed together and provides insights additional to those
derived from the use of a single proxy. In this regard, Erosion/erosion (EE) and Accretion/accretion
(AA) were the most frequent behaviors in the first and second periods. The results obtained provide
additional insights on the nature and drivers of coastal change that aid local coastal managers and
administrations in understanding erosion processes. The method can be applied to other areas around
the world where a similar database is available
Structure-from-Motion-Derived Digital Surface Models from Historical Aerial Photographs: A New 3D Application for Coastal Dune Monitoring
Recent advances in structure-from-motion (SfM) techniques have proliferated the use of unmanned aerial vehicles (UAVs) in the monitoring of coastal landform changes, particularly when applied in the reconstruction of 3D surface models from historical aerial photographs. Here, we explore a number of depth map filtering and point cloud cleaning methods using the commercial software Agisoft Metashape Pro to determine the optimal methodology to build reliable digital surface models (DSMs). Twelve different aerial photography-derived DSMs are validated and compared against light detection and ranging (LiDAR)- and UAV-derived DSMs of a vegetated coastal dune system that has undergone several decades of coastline retreat. The different studied methods showed an average vertical error (root mean square error, RMSE) of approximately 1 m, with the best method resulting in an error value of 0.93 m. In our case, the best method resulted from the removal of confidence values in the range of 0–3 from the dense point cloud (DPC), with no filter applied to the depth maps. Differences among the methods examined were associated with the reconstruction of the dune slipface. The application of the modern SfM methodology to the analysis of historical aerial (vertical) photography is a novel (and reliable) new approach that can be used to better quantify coastal dune volume changes. DSMs derived from suitable historical aerial photographs, therefore, represent dependable sources of 3D data that can be used to better analyse long-term geomorphic changes in coastal dune areas that have undergone retreat
Across the Indian Ocean: a remarkable example of trans-oceanic dispersal in an austral mygalomorph spider [dataset]
The Migidae are a family of austral trapdoor spiders known to show a highly restricted and disjunct distribution pattern. Here, we aim to investigate the phylogeny and historical biogeography of the group, which was previously thought to be vicariant in origin, and examine the biogeographic origins of the genus Moggridgea using a dated multi-gene phylogeny. Moggridgea specimens were sampled from southern Australia and Africa, and Bertmainus was sampled from Western Australia. Sanger sequencing methods were used to generate a robust six marker molecular dataset consisting of the nuclear genes 18S rRNA, 28S rRNA, ITS rRNA, XPNPEP3 and H3 and the mitochondrial gene COI. Bayesian and Maximum Likelihood methods were used to analyse the dataset, and the key dispersal nodes were dated using BEAST. Based on our data, we demonstrate that Moggridgea rainbowi from Kangaroo Island, Australia is a valid member of the otherwise African genus Moggridgea. Molecular clock dating analyses show that the inter-specific divergence of M. rainbowi from African congeners is between 2.27â16.02 million years ago (Mya). This divergence date significantly post-dates the separation of Africa from Gondwana (95 Mya) and therefore does not support a vicariant origin for Australian Moggridgea. It also pre-dates human colonisation of Kangaroo Island, a result which is further supported by the intra-specific divergence date of 1.10â6.39 Mya between separate populations on Kangaroo Island. These analyses provide strong support for the hypothesis that Moggridgea colonised Australia via long-distance trans-Indian Ocean dispersal, representing the first such documented case in a mygalomorph spider
- âŠ