1,009 research outputs found
On time and the quantum-to-classical transition in Jordan-Brans-Dicke quantum gravity
Any quantum theory of gravity which treats the gravitational constant as a
dynamical variable has to address the issue of superpositions of states
corresponding to different eigenvalues. We show how the unobservability of such
superpositions can be explained through the interaction with other
gravitational degrees of freedom (decoherence). The formal framework is
canonically quantized Jordan-Brans-Dicke theory. We discuss the concepts of
intrinsic time and semiclassical time as well as the possibility of tunneling
into regions corresponding to a negative gravitational constant. We calculate
the reduced density matrix of the Jordan-Brans-Dicke field and show that the
off-diagonal elements can be sufficiently suppressed to be consistent with
experiments. The possible relevance of this mechanism for structure formation
in extended inflation is briefly discussed.Comment: 10 pages, Latex, ZU-TH 15/93, BUTP-93/1
Quantum Theory and Time Asymmetry
The relation between quantum measurement and thermodynamically irreversible
processes is investigated. The reduction of the state vector is fundamentally
asymmetric in time and shows an observer-relatedness which may explain the
double interpretation of the state vector as a representation of physical
states as well as of information about them. The concept of relevance being
used in all statistical theories of irreversible thermodynamics is shown to be
based on the same observer-relatedness. Quantum theories of irreversible
processes implicitly use an objectivized process of state vector reduction. The
conditions for the reduction are discussed, and I speculate that the final
(subjective) observer system might even be carried by a spacetime point.Comment: Latex version of a paper published in 1979 (with minor revisions), 18
page
GRB afterglow light curves in the pre-Swift era - a statistical study
We present the results of a systematic analysis of the world sample of
optical/near-infrared afterglow light curves observed in the pre-Swift era by
the end of 2004. After selecting the best observed 16 afterglows with
well-sampled light curves that can be described by a Beuermann equation, we
explore the parameter space of the light curve parameters and physical
quantities related to them. In addition, we search for correlations between
these parameters and the corresponding gamma-ray data, and we use our data set
to look for a fine structure in the light curves.Comment: accepted for publication in ApJ; Version 2: minor changes, one figure
adde
N-particle sector of quantum field theory as a quantum open system
We give an exposition of a technique, based on the Zwanzig projection
formalism, to construct the evolution equation for the reduced density matrix
corresponding to the n-particle sector of a field theory. We consider the case
of a scalar field with a interaction as an example and construct the
master equation at the lowest non-zero order in perturbation theory.Comment: 12 pages, Late
Entanglement and the Thermodynamic Arrow of Time
We discuss quantum entanglement in the context of the thermodynamic arrow of
time. We review the role of correlations in entropy-decreasing events and prove
that the occurrence of a transformation between two thermodynamic states
constitutes a new type of entanglement witness, one not defined as a separating
plane in state space between separable and entangled states, but as a physical
process dependent on the local initial properties of the states. Extending work
by Partovi, we consider a general entangled multipartite system that allows
large reversals of the thermodynamic arrow of time. We describe a hierarchy of
arrows that arises from the different correlations allowed in a quantum state
and examine these features in the context of Maxwell's Demon. We examine in
detail the case of three qubits, and also propose some simple experimental
demonstrations possible with small numbers of qubits.Comment: 10 pages with 9 figure
Quantum Cosmology of Kantowski-Sachs like Models
The Wheeler-DeWitt equation for a class of Kantowski-Sachs like models is
completely solved. The generalized models include the Kantowski-Sachs model
with cosmological constant and pressureless dust. Likewise contained is a
joined model which consists of a Kantowski-Sachs cylinder inserted between two
FRW half--spheres. The (second order) WKB approximation is exact for the wave
functions of the complete set and this facilitates the product structure of the
wave function for the joined model. In spite of the product structure the wave
function can not be interpreted as admitting no correlations between the
different regions. This problem is due to the joining procedure and may
therefore be present for all joined models. Finally, the {s}ymmetric {i}nitial
{c}ondition (SIC) for the wave function is analyzed and compared with the ``no
bouindary'' condition. The consequences of the different boundary conditions
for the arrow of time are briefly mentioned.Comment: 21 pages, uses LaTeX2e, epsf.sty and float.sty, three figures (50
kb); changes: one figure added, new interpretation of quantizing procedure
for the joined model and many minor change
Early optical observations of GRBs by the TAROT telescopes: period 2001-2008
The TAROT telescopes (Telescopes a Action Rapide pour les Objets
Transitoires) are two robotic observatories designed to observe the prompt
optical emission counterpart and the early afterglow of gamma ray bursts
(GRBs). We present data acquired between 2001 and 2008 and discuss the
properties of the optical emission of GRBs, noting various interesting results.
The optical emission observed during the prompt GRB phase is rarely very
bright: we estimate that 5% to 20% of GRBs exhibit a bright optical flash
(R<14) during the prompt gamma-ray emission, and that more than 50% of the GRBs
have an optical emission fainter than R=15.5 when the gamma-ray emission is
active. We study the apparent optical brightness distribution of GRBs at 1000 s
showing that our observations confirm the distribution derived by other groups.
The combination of these results with those obtained by other rapid slewing
telescopes allows us to better characterize the early optical emission of GRBs
and to emphasize the importance of very early multi-wavelength GRB studies for
the understanding of the physics of the ejecta.Comment: 13 pages, 2 color figures, 5 b&w figures. Accepted for publication in
Astronomical Journa
Quantum cosmology with big-brake singularity
We investigate a cosmological model with a big-brake singularity in the
future: while the first time derivative of the scale factor goes to zero, its
second time derivative tends to minus infinity. Although we also discuss the
classical version of the model in some detail, our main interest lies in its
quantization. We formulate the Wheeler-DeWitt equation and derive solutions
describing wave packets. We show that all such solutions vanish in the region
of the classical singularity, a behaviour which we interpret as singularity
avoidance. We then discuss the same situation in loop quantum cosmology. While
this leads to a different factor ordering, the singularity is there avoided,
too.Comment: 24 pages, 7 figures, figures improved, references added, conceptual
clarifications include
Decoherence of a Pointer by a Gas Reservoir
We study the effect of the environment on the process of the measurement of a
state of a microscopic spin half system. The measuring apparatus is a heavy
particle, whose center of mass coordinates can be considered at the end of the
measurement as approximately classical, and thus can be used as a pointer. The
state of the pointer, which is the result of its interaction with the spin, is
transformed into a mixed state by the coupling of the pointer to the
environment. The environment is considered to be a gas reservoir, whose
particles interact with the pointer. This results in a Fokker-Planck equation
for the reduced density matrix of the pointer. The solution of the equation
shows that the quantum coherences, which are characteristic to the entangled
state between the probabilities to find the pointer in one of two positions,
decays exponentially fast in time. We calculate the exponential decay function
of this decoherence effect, and express it in terms of the parameters of the
model.Comment: 41 pages, 1 figur
Locating Overlap Information in Quantum Systems
When discussing the black hole information problem the term ``information
flow'' is frequently used in a rather loose fashion. In this article I attempt
to make this notion more concrete. I consider a Hilbert space which is
constructed as a tensor product of two subspaces (representing for example
inside and outside the black hole). I discuss how the system has the capacity
to contain information which is in NEITHER of the subspaces. I attempt to
quantify the amount of information located in each of the two subspaces, and
elsewhere, and analyze the extent to which unitary evolution can correspond to
``information flow''. I define the notion of ``overlap information'' which
appears to be well suited to the problem.Comment: 25 pages plain LaTeX, no figures. Imperial/TP/93-94/2
- …