548 research outputs found

    Scientific Standards and the Regulation of Genetically Modified Insects

    Get PDF
    Experimental releases of genetically modified (GM) insects are reportedly being evaluated in various countries, including Brazil, the Cayman Islands (United Kingdom), France, Guatemala, India, Malaysia, Mexico, Panama, Philippines, Singapore, Thailand, the United States of America, and Vietnam. GM mosquitoes (Aedes aegypti) have already been released for field trials into inhabited areas in the Cayman Islands (2009–?), Malaysia (2010–2011), and Brazil (2011–2012). Here, we assess the regulatory process in the first three countries permitting releases (Malaysia, US, and the Cayman Islands) in terms of pre-release transparency and scientific quality. We find that, despite 14 US government–funded field trials over the last 9 years (on a moth pest of cotton), there has been no scientific publication of experimental data, and in only two instances have permit applications been published. The world's first environmental impact statement (EIS) on GM insects, produced by US authorities in 2008, is found to be scientifically deficient on the basis that (1) most consideration of environmental risk is too generic to be scientifically meaningful; (2) it relies on unpublished data to establish central scientific points; and (3) of the approximately 170 scientific publications cited, the endorsement of the majority of novel transgenic approaches is based on just two laboratory studies in only one of the four species covered by the document. We find that it is not possible to determine from documents publically available prior to the start of releases if obvious hazards of the particular GM mosquitoes released in Malaysia, the Cayman Islands, and Brazil received expert examination. Simple regulatory measures are proposed that would build public confidence and stimulate the independent experimental studies that environmental risk assessments require. Finally, a checklist is provided to assist the general public, journalists, and lawmakers in determining, from documents issued by regulators prior to the start of releases, whether permit approval is likely to have a scientifically high quality basi

    Development of a Novel Biological Intervertebral Disc Scaffold

    Get PDF
    Back pain is a major public health issue in our society, and is strongly correlated with the degeneration of intervertebral discs (IVDs). Current therapies are conservative or surgical, and no attempt to regenerate the IVD. The first goal of our project is to create a fully decellularized bovine caudal IVD to be used as a scaffold on which to seed adult human stem cells in an attempt to engineer a healthy, replacement IVD for patients suffering from IVD degeneration and lower back pain. The goal of decellularization is to eliminate DNA content while retaining glycosaminoglycan (GAG) content. Eliminating DNA content will prevent a foreign body response by the host\u27s immune system once the IVD is implanted. GAG is responsible for forming interfibrillar bridges with collagen fibrils and thus assisting in resisting compressive and tensile forces. By retaining GAG content in our decellularized IVDs we will maintain structural integrity of the extracellular matrix. The IVDs closest to the base of the bovine tail were targeted, because they are similar in size and biochemistry to the human IVD. We use a mix of conventional methods including freeze thaw, sonication and agitation in a solution of sodium dodecyl sulfate (SDS) and ethylene diamine tetraacetic acid (EDTA). After decellularization, half of each IVD was placed in a tissue cassette and put formalin in preparation for histological analysis, and the other half was frozen prior to biochemical analysis (DMMB and PicoGreen assay). Our results thus far are promising in eliminating DNA content but show we have a large room for improvement in retaining GAG content

    Bearing Capacity and Load-Displacement Behavior of Rigid Pads on Soft, Sensitive, Clay

    Get PDF
    The paper describes tests on rigid square pads at the UK national soft clay research site at Bothkennar, Scotland. The work was performed as a low cost adjunct to the instrumented pile research described by Lehane and Jardine (1992). Its aims were to investigate (i} bearing capacity, (ii) load-displacement response to short and long term loading, (iii) the applicability of relevant theories and (iv) relationships between soil properties determined in-situ and those measured in high quality laboratory tests

    Adult midgut expressed sequence tags from the tsetse fly Glossina morsitans morsitans and expression analysis of putative immune response genes

    Get PDF
    BACKGROUND: Tsetse flies transmit African trypanosomiasis leading to half a million cases annually. Trypanosomiasis in animals (nagana) remains a massive brake on African agricultural development. While trypanosome biology is widely studied, knowledge of tsetse flies is very limited, particularly at the molecular level. This is a serious impediment to investigations of tsetse-trypanosome interactions. We have undertaken an expressed sequence tag (EST) project on the adult tsetse midgut, the major organ system for establishment and early development of trypanosomes. RESULTS: A total of 21,427 ESTs were produced from the midgut of adult Glossina morsitans morsitans and grouped into 8,876 clusters or singletons potentially representing unique genes. Putative functions were ascribed to 4,035 of these by homology. Of these, a remarkable 3,884 had their most significant matches in the Drosophila protein database. We selected 68 genes with putative immune-related functions, macroarrayed them and determined their expression profiles following bacterial or trypanosome challenge. In both infections many genes are downregulated, suggesting a malaise response in the midgut. Trypanosome and bacterial challenge result in upregulation of different genes, suggesting that different recognition pathways are involved in the two responses. The most notable block of genes upregulated in response to trypanosome challenge are a series of Toll and Imd genes and a series of genes involved in oxidative stress responses. CONCLUSIONS: The project increases the number of known Glossina genes by two orders of magnitude. Identification of putative immunity genes and their preliminary characterization provides a resource for the experimental dissection of tsetse-trypanosome interactions

    Cryptic diversity within the major trypanosomiasis vector Glossina fuscipes revealed by molecular markers

    Get PDF
    Background: The tsetse fly Glossina fuscipes s.l. is responsible for the transmission of approximately 90% of cases of human African trypanosomiasis (HAT) or sleeping sickness. Three G. fuscipes subspecies have been described, primarily based upon subtle differences in the morphology of their genitalia. Here we describe a study conducted across the range of this important vector to determine whether molecular evidence generated from nuclear DNA (microsatellites and gene sequence information), mitochondrial DNA and symbiont DNA support the existence of these taxa as discrete taxonomic units. Principal Findings: The nuclear ribosomal Internal transcribed spacer 1 (ITS1) provided support for the three subspecies. However nuclear and mitochondrial sequence data did not support the monophyly of the morphological subspecies G. f.fuscipes or G. f. quanzensis. Instead, the most strongly supported monophyletic group was comprised of flies sampled fromEthiopia. Maternally inherited loci (mtDNA and symbiont) also suggested monophyly of a group from Lake Victoria basin and Tanzania, but this group was not supported by nuclear loci, suggesting different histories of these markers. Microsatellite data confirmed strong structuring across the range of G. fuscipes s.l., and was useful for deriving the interrelationship of closely related populations. Conclusion/Significance: We propose that the morphological classification alone is not used to classify populations of G. fuscipes for control purposes. The Ethiopian population, which is scheduled to be the target of a sterile insect release (SIT) programme, was notably discrete. From a programmatic perspective this may be both positive, given that it may reflect limited migration into the area or negative if the high levels of differentiation are also reflected in reproductive isolation between this population and the flies to be used in the release programme

    Prospects for developing odour baits to Control Glossina fuscipes spp., the major vector of human African trypanosomiasis

    Get PDF
    We are attempting to develop cost-effective control methods for the important vector of sleeping sickness, Glossina fuscipes spp. Responses of the tsetse flies Glossina fuscipes fuscipes (in Kenya) and G. f. quanzensis (in Democratic Republic of Congo) to natural host odours are reported. Arrangements of electric nets were used to assess the effect of cattle-, human- and pig-odour on (1) the numbers of tsetse attracted to the odour source and (2) the proportion of flies that landed on a black target (1 x 1 m). In addition responses to monitor lizard (Varanus niloticus) were assessed in Kenya. The effects of all four odours on the proportion of tsetse that entered a biconical trap were also determined. Sources of natural host odour were produced by placing live hosts in a tent or metal hut (volumes approximate to 16 m(3)) from which the air was exhausted at similar to 2000 L/min. Odours from cattle, pigs and humans had no significant effect on attraction of G. f. fuscipes but lizard odour doubled the catch (P<0.05). Similarly, mammalian odours had no significant effect on landing or trap entry whereas lizard odour increased these responses significantly: landing responses increased significantly by 22% for males and 10% for females; the increase in trap efficiency was relatively slight (5-10%) and not always significant. For G. f. quanzensis, only pig odour had a consistent effect, doubling the catch of females attracted to the source and increasing the landing response for females by similar to 15%. Dispensing CO2 at doses equivalent to natural hosts suggested that the response of G. f. fuscipes to lizard odour was not due to CO2. For G. f. quanzensis, pig odour and CO2 attracted similar numbers of tsetse, but CO2 had no material effect on the landing response. The results suggest that identifying kairomones present in lizard odour for G. f. fuscipes and pig odour for G. f. quanzensis may improve the performance of targets for controlling these species

    International Glossina Genome Initiative 2004-2014: a driver for post-genomic era research on the African continent

    Get PDF
    Human African trypanosomiasis (HAT), also known as sleeping sickness, is a neglected disease that impacts 70 million people distributed over 1.55 million km2 in sub- Saharan Africa and includes at least 50% of the population of theDemocratic Republic of the Congo [1]. Trypanosoma brucei gambiense accounts for more than 98% of the infections in central and West Africa, the remaining infections being from Trypanosoma brucei rhodesiense in East Africa [2]. The parasites are transmitted to the hosts through the bite of an infected tsetse fly. Disease control is challenging as there are no vaccines, and effective, easily delivered drugs are still lacking. Treatment invariably involves lengthy hospitalization, with both medical and socioeconomic consequences.Web of Scienc

    Tsetse control and Gambian sleeping sickness ; implications for control strategy

    Get PDF
    Background Gambian sleeping sickness (human African trypanosomiasis, HAT) outbreaks are brought under control by case detection and treatment although it is recognised that this typically only reaches about 75% of the population. Vector control is capable of completely interrupting HAT transmission but is not used because it is considered too expensive and difficult to organise in resource-poor settings. We conducted a full scale field trial of a refined vector control technology to determine its utility in control of Gambian HAT. Methods and Findings The major vector of Gambian HAT is the tsetse fly Glossina fuscipes which lives in the humid zone immediately adjacent to water bodies. From a series of preliminary trials we determined the number of tiny targets required to reduce G. fuscipes populations by more than 90%. Using these data for model calibration we predicted we needed a target density of 20 per linear km of river in riverine savannah to achieve >90% tsetse control. We then carried out a full scale, 500 km(2) field trial covering two HAT foci in Northern Uganda to determine the efficacy of tiny targets (overall target density 5.7/km(2)). In 12 months, tsetse populations declined by more than 90%. As a guide we used a published HAT transmission model and calculated that a 72% reduction in tsetse population is required to stop transmission in those settings. Interpretation The Ugandan census suggests population density in the HAT foci is approximately 500 per km2. The estimated cost for a single round of active case detection (excluding treatment), covering 80% of the population, is US433,333(WHOfigures).Oneyearofvectorcontrolorganisedwithinthecountry,whichcancompletelystopHATtransmission,wouldcostUS433,333 (WHO figures). One year of vector control organised within the country, which can completely stop HAT transmission, would cost US42,700. The case for adding this method of vector control to case detection and treatment is strong. We outline how such a component could be organised

    Vegetation and the importance of insecticide-treated target siting for control of Glossina fuscipes fuscipes

    Get PDF
    Control of tsetse flies using insecticide-treated targets is often hampered by vegetation re-growth and encroachment which obscures a target and renders it less effective. Potentially this is of particular concern for the newly developed small targets (0.25 high Ă— 0.5 m wide) which show promise for cost-efficient control of Palpalis group tsetse flies. Consequently the performance of a small target was investigated for Glossina fuscipes fuscipes in Kenya, when the target was obscured following the placement of vegetation to simulate various degrees of natural bush encroachment. Catches decreased significantly only when the target was obscured by more than 80%. Even if a small target is underneath a very low overhanging bush (0.5 m above ground), the numbers of G. f. fuscipes decreased by only about 30% compared to a target in the open. We show that the efficiency of the small targets, even in small (1 m diameter) clearings, is largely uncompromised by vegetation re-growth because G. f. fuscipes readily enter between and under vegetation. The essential characteristic is that there should be some openings between vegetation. This implies that for this important vector of HAT, and possibly other Palpalis group flies, a smaller initial clearance zone around targets can be made and longer interval between site maintenance visits is possible both of which will result in cost savings for large scale operations. We also investigated and discuss other site features e.g. large solid objects and position in relation to the water's edge in terms of the efficacy of the small targets

    Mass drug administration and beyond : how can we strengthen health systems to deliver complex interventions to eliminate neglected tropical diseases?

    Get PDF
    Achieving the 2020 goals for Neglected Tropical Diseases (NTDs) requires scale-up of Mass Drug Administration (MDA) which will require long-term commitment of national and global financing partners, strengthening national capacity and, at the community level, systems to monitor and evaluate activities and impact. For some settings and diseases, MDA is not appropriate and alternative interventions are required. Operational research is necessary to identify how existing MDA networks can deliver this more complex range of interventions equitably. The final stages of the different global programmes to eliminate NTDs require eliminating foci of transmission which are likely to persist in complex and remote rural settings. Operational research is required to identify how current tools and practices might be adapted to locate and eliminate these hard-to-reach foci. Chronic disabilities caused by NTDs will persist after transmission of pathogens ceases. Development and delivery of sustainable services to reduce the NTD-related disability is an urgent public health priority. LSTM and its partners are world leaders in developing and delivering interventions to control vector-borne NTDs and malaria, particularly in hard-to-reach settings in Africa. Our experience, partnerships and research capacity allows us to serve as a hub for developing, supporting, monitoring and evaluating global programmes to eliminate NTDs
    • …
    corecore