245 research outputs found

    Plasma metabolite profile for primary open-angle glaucoma in three US cohorts and the UK Biobank

    Get PDF
    Glaucoma is a progressive optic neuropathy and a leading cause of irreversible blindness worldwide. Primary open-angle glaucoma is the most common form, and yet the etiology of this multifactorial disease is poorly understood. We aimed to identify plasma metabolites associated with the risk of developing POAG in a case-control study (599 cases and 599 matched controls) nested within the Nurses' Health Studies, and Health Professionals' Follow-Up Study. Plasma metabolites were measured with LC-MS/MS at the Broad Institute (Cambridge, MA, USA); 369 metabolites from 18 metabolite classes passed quality control analyses. For comparison, in a cross-sectional study in the UK Biobank, 168 metabolites were measured in plasma samples from 2,238 prevalent glaucoma cases and 44,723 controls using NMR spectroscopy (Nightingale, Finland; version 2020). Here we show higher levels of diglycerides and triglycerides are adversely associated with glaucoma in all four cohorts, suggesting that they play an important role in glaucoma pathogenesis

    Plasma metabolite profiles in children with current asthma

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146270/1/cea13183.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146270/2/cea13183_am.pd

    Polymorphisms in IL12A and cockroach allergy in children with asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>IL12A has been implicated in T-cell development and may thus influence the development of atopy and allergic diseases.</p> <p>Methods</p> <p>We tested for association between four linkage disequilibrium (LD)-tagging SNPs (rs2243123, rs2243151, rs668998, and rs17826053) in <it>IL12A </it>and asthma and allergy-related (serum total and allergen-specific IgE, and skin test reactivity [STR] to two common allergens) phenotypes in two samples: 417 Costa Rican children with asthma and their parents, and 470 families of 503 white children in the Childhood Asthma Management Program (CAMP). The analysis was conducted using the family-based association test (FBAT) statistic implemented in the PBAT program.</p> <p>Results</p> <p>Among Costa Rican children with asthma, homozygosity for the minor allele of each of two SNPs in <it>IL12A </it>(rs2243123 and rs2243151) was associated with increased risks of STR to American cockroach (P ≤ 0.03 for both SNPs), STR to German cockroach (P ≤ 0.01 for both SNPs), and having a positive IgE to German cockroach (P < 0.05 for both SNPs). Among children in CAMP, homozygosity for the minor allele of SNP rs2243151 in <it>IL12A </it>was inversely associated with STR to German cockroach (P = 0.03) and homozygosity for the minor allele of SNP rs17826053 in <it>IL12A </it>was associated with increased risks of STR to American cockroach (P = 0.01) and STR to German cockroach (P = 0.007). There was no significant association between any SNP in <it>IL12A </it>and asthma, STR to dust mite, or total IgE in Costa Rica or CAMP.</p> <p>Conclusion</p> <p>Our findings suggest that variants in <it>IL12A </it>influence cockroach allergy among children with asthma.</p

    Bacille Calmette-Guérin vaccine reprograms human neonatal lipid metabolism in vitro and in vivo

    Get PDF
    Vaccines have generally been developed with limited insight into their molecular impact. While systems vaccinology enables characterization of mechanisms of action, these tools have yet to be applied to infants, who are at high risk of infection and receive the most vaccines. Bacille Calmette-Guérin (BCG) protects infants against disseminated tuberculosis (TB) and TB-unrelated infections via incompletely understood mechanisms. We employ mass-spectrometry-based metabolomics of blood plasma to profile BCG-induced infant responses in Guinea-Bissau in vivo and the US in vitro. BCG-induced lysophosphatidylcholines (LPCs) correlate with both TLR-agonist- and purified protein derivative (PPD, mycobacterial antigen)-induced blood cytokine production in vitro, raising the possibility that LPCs contribute to BCG immunogenicity. Analysis of an independent newborn cohort from The Gambia demonstrates shared vaccine-induced metabolites, such as phospholipids and sphingolipids. BCG-induced changes to the plasma lipidome and LPCs may contribute to its immunogenicity and inform the development of early life vaccines

    Phosphoric Metabolites Link Phosphate Import and Polysaccharide Biosynthesis for Candida albicans Cell Wall Maintenance

    Get PDF
    ACKNOWLEDGMENTS We declare no conflicts of interest. We thank Jesús Pla for his kind gift of the anti-Mkc1 antibody and Kristin Moffitt and Richard Malley for generous advice in ELISA technology and use of the ELISA reader. We thank Tahmeena Chowdhury for scientific discussions leading up to this work. We thank the Candida Genome Database. N.-N.L., M.A.-Z., W.Q., and J.R.K. were supported by R21 AI137716 and by Boston Children’s Hospital Department of Pediatrics. M.A.-Z. was partially funded by the Alfonso Martin Escudero Foundation. J.D.-A. and O.L. were funded by the Boston Children’s Hospital Department of Pediatrics and U19 AI118608-01A1. N.A.R.G. was supported by the Wellcome Trust and the Medical Research Council Centre for Medical Mycology (MR/N006364/1).Peer reviewedPublisher PD

    Circulating N-formylmethionine and metabolic shift in critical illness : a multicohort metabolomics study

    Get PDF
    Funding Information: KN is supported by Foundation for the National Institutes of Health (NIH)/National Center for Advancing Translational Sciences grant KL2-TR-002385, R01 HL123915. AJR is supported by NIH grant R01 HL152083. LEF is supported by NIH grant R01 HL114839. RMB is supported by NIH grants R01 HL142093 and R01 GM115605. KBC is supported by NIH grant R01 GM115774. The VITdAL-ICU trial was supported by the European Society for Clinical Nutrition and Metabolism (ESPEN), a research grant including provision of study medication from Fresenius Kabi (Germany), and the Austrian National Bank (Jubiläumsfonds, Project Nr. 14143). Landspitali University Hospital Science Fund: A2021-03 Publisher Copyright: © 2022, The Author(s). © 2022. The Author(s).BACKGROUND: Cell stress promotes degradation of mitochondria which release danger-associated molecular patterns that are catabolized to N-formylmethionine. We hypothesized that in critically ill adults, the response to N-formylmethionine is associated with increases in metabolomic shift-related metabolites and increases in 28-day mortality. METHODS: We performed metabolomics analyses on plasma from the 428-subject Correction of Vitamin D Deficiency in Critically Ill Patients trial (VITdAL-ICU) cohort and the 90-subject Brigham and Women's Hospital Registry of Critical Illness (RoCI) cohort. In the VITdAL-ICU cohort, we analyzed 983 metabolites at Intensive Care Unit (ICU) admission, day 3, and 7. In the RoCI cohort, we analyzed 411 metabolites at ICU admission. The association between N-formylmethionine and mortality was determined by adjusted logistic regression. The relationship between individual metabolites and N-formylmethionine abundance was assessed with false discovery rate correction via linear regression, linear mixed-effects, and Gaussian graphical models. RESULTS: Patients with the top quartile of N-formylmethionine abundance at ICU admission had a significantly higher adjusted odds of 28-day mortality in the VITdAL-ICU (OR, 2.4; 95%CI 1.5-4.0; P = 0.001) and RoCI cohorts (OR, 5.1; 95%CI 1.4-18.7; P = 0.015). Adjusted linear regression shows that with increases in N-formylmethionine abundance at ICU admission, 55 metabolites have significant differences common to both the VITdAL-ICU and RoCI cohorts. With increased N-formylmethionine abundance, both cohorts had elevations in individual short-chain acylcarnitine, branched chain amino acid, kynurenine pathway, and pentose phosphate pathway metabolites. CONCLUSIONS: The results indicate that circulating N-formylmethionine promotes a metabolic shift with heightened mortality that involves incomplete mitochondrial fatty acid oxidation, increased branched chain amino acid metabolism, and activation of the pentose phosphate pathway.Peer reviewe

    Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci.

    Get PDF
    Genetic and environmental components as well as their interaction contribute to the risk of schizophrenia, making it highly relevant to include environmental factors in genetic studies of schizophrenia. This study comprises genome-wide association (GWA) and follow-up analyses of all individuals born in Denmark since 1981 and diagnosed with schizophrenia as well as controls from the same birth cohort. Furthermore, we present the first genome-wide interaction survey of single nucleotide polymorphisms (SNPs) and maternal cytomegalovirus (CMV) infection. The GWA analysis included 888 cases and 882 controls, and the follow-up investigation of the top GWA results was performed in independent Danish (1396 cases and 1803 controls) and German-Dutch (1169 cases, 3714 controls) samples. The SNPs most strongly associated in the single-marker analysis of the combined Danish samples were rs4757144 in ARNTL (P=3.78 × 10(-6)) and rs8057927 in CDH13 (P=1.39 × 10(-5)). Both genes have previously been linked to schizophrenia or other psychiatric disorders. The strongest associated SNP in the combined analysis, including Danish and German-Dutch samples, was rs12922317 in RUNDC2A (P=9.04 × 10(-7)). A region-based analysis summarizing independent signals in segments of 100 kb identified a new region-based genome-wide significant locus overlapping the gene ZEB1 (P=7.0 × 10(-7)). This signal was replicated in the follow-up analysis (P=2.3 × 10(-2)). Significant interaction with maternal CMV infection was found for rs7902091 (P(SNP × CMV)=7.3 × 10(-7)) in CTNNA3, a gene not previously implicated in schizophrenia, stressing the importance of including environmental factors in genetic studies

    Whole-genome resequencing of two elite sires for the detection of haplotypes under selection in dairy cattle

    Get PDF
    Using a combination of whole-genome resequencing and high-density genotyping arrays, genome-wide haplotypes were reconstructed for two of the most important bulls in the history of the dairy cattle industry, Pawnee Farm Arlinda Chief (“Chief”) and his son Walkway Chief Mark (“Mark”), each accounting for ∼7% of all current genomes. We aligned 20.5 Gbp (∼7.3× coverage) and 37.9 Gbp (∼13.5× coverage) of the Chief and Mark genomic sequences, respectively. More than 1.3 million high-quality SNPs were detected in Chief and Mark sequences. The genome-wide haplotypes inherited by Mark from Chief were reconstructed using ∼1 million informative SNPs. Comparison of a set of 15,826 SNPs that overlapped in the sequence-based and BovineSNP50 SNPs showed the accuracy of the sequence-based haplotype reconstruction to be as high as 97%. By using the BovineSNP50 genotypes, the frequencies of Chief alleles on his two haplotypes then were determined in 1,149 of his descendants, and the distribution was compared with the frequencies that would be expected assuming no selection. We identified 49 chromosomal segments in which Chief alleles showed strong evidence of selection. Candidate polymorphisms for traits that have been under selection in the dairy cattle population then were identified by referencing Chief’s DNA sequence within these selected chromosome blocks. Eleven candidate genes were identified with functions related to milk-production, fertility, and disease-resistance traits. These data demonstrate that haplotype reconstruction of an ancestral proband by whole-genome resequencing in combination with high-density SNP genotyping of descendants can be used for rapid, genome-wide identification of the ancestor’s alleles that have been subjected to artificial selection

    Childhood behaviour problems show the greatest gap between DNA-based and twin heritability

    Get PDF
    For most complex traits, DNA-based heritability (‘SNP heritability’) is roughly half that of twin-based heritability. A previous report from the Twins Early Development Study suggested that this heritability gap is much greater for childhood behaviour problems than for other domains. If true, this finding is important because SNP heritability, not twin heritability, is the ceiling for genome-wide association studies. With twice the sample size as the previous report, we estimated SNP heritabilities (N up to 4653 unrelated individuals) and compared them with twin heritabilities from the same sample (N up to 4724 twin pairs) for diverse domains of childhood behaviour problems as rated by parents, teachers, and children themselves at ages 12 and 16. For 37 behaviour problem measures, the average twin heritability was 0.52, whereas the average SNP heritability was just 0.06. In contrast, results for cognitive and anthropometric traits were more typical (average twin and SNP heritabilities were 0.58 and 0.28, respectively). Future research should continue to investigate the reasons why SNP heritabilities for childhood behaviour problems are so low compared with twin estimates, and find ways to maximise SNP heritability for genome-wide association studies
    corecore