562 research outputs found
The measurement of the Higgs self-coupling at the LHC: theoretical status
Now that the Higgs boson has been observed by the ATLAS and CMS experiments
at the LHC, the next important step would be to measure accurately its
properties to establish the details of the electroweak symmetry breaking
mechanism. Among the measurements which need to be performed, the determination
of the Higgs self-coupling in processes where the Higgs boson is produced in
pairs is of utmost importance. In this paper, we discuss the various processes
which allow for the measurement of the trilinear Higgs coupling: double Higgs
production in the gluon fusion, vector boson fusion, double Higgs-strahlung and
associated production with a top quark pair. We first evaluate the production
cross sections for these processes at the LHC with center-of-mass energies
ranging from the present TeV to TeV, and discuss
their sensitivity to the trilinear Higgs coupling. We include the various
higher order QCD radiative corrections, at next-to-leading order for gluon and
vector boson fusion and at next-to-next-to-leading order for associated double
Higgs production with a gauge boson. The theoretical uncertainties on these
cross sections are estimated. Finally, we discuss the various channels which
could allow for the detection of the double Higgs production signal at the LHC
and the accuracy on the self-coupling that could be ultimately achieved.Comment: 37 pages, 10 tables, 17 figures. Typos corrected, matches the journal
versio
Extension of Bethe's diffraction model to conical Geometry: application to near field optics
The generality of the Bethe's two dipole model for light diffraction through
a subwavelength aperture in a conducting plane is studied in the radiation zone
for coated conical fiber tips as those used in near field scanning optical
microscopy. In order to describe the angular radiated power of the tip
theoretically, we present a simple, analytical model for small apertures
(radius < 40 nm) based on a multipole expansion. Our model is able to reproduce
the available experimental results. It proves relatively insensitive to cone
angle and aperture radius and contains, as a first approximation, the empirical
two-dipole model proposed earlier
Theory of imaging a photonic crystal with transmission near-field optical microscopy
While near-field scanning optical microscopy (NSOM) can provide optical
images with resolution much better than the diffraction limit, analysis and
interpretation of these images is often difficult. We present a theory of
imaging with transmission NSOM that includes the effects of tip field,
tip/sample coupling, light propagation through the sample and light collection.
We apply this theory to analyze experimental NSOM images of a nanochannel glass
(NCG) array obtained in transmission mode. The NCG is a triangular array of
dielectric rods in a dielectric glass matrix with a two-dimensional photonic
band structure. We determine the modes for the NCG photonic crystal and
simulate the observed data. The calculations show large contrast at low
numerical aperture (NA) of the collection optics and detailed structure at high
NA consistent with the observed images. We present calculations as a function
of NA to identify how the NCG photonic modes contribute to and determine the
spatial structure in these images. Calculations are presented as a function of
tip/sample position, sample index contrast and geometry, and aperture size to
identify the factors that determine image formation with transmission NSOM in
this experiment.Comment: 28 pages of ReVTex, 14 ps figures, submitted to Phys. Rev.
Local Optical Spectroscopy in Quantum Confined Systems: A Theoretical Description
A theoretical description of local absorption is proposed in order to
investigate spectral variations on a length scale comparable with the extension
of the relevant quantum states. A general formulation is derived within the
density-matrix formalism including Coulomb correlation, and applied to the
prototypical case of coupled quantum wires. The results show that excitonic
effects may have a crucial impact on the local absorption with implications for
the spatial resolution and the interpretation of near-field optical spectra.Comment: To appear in Phys. Rev. Lett. - 11 pages, 3 PostScript figures (1
figure in colors) embedded. Uses RevTex, and psfig style
Probing for Invisible Higgs Decays with Global Fits
We demonstrate by performing a global fit on Higgs signal strength data that
large invisible branching ratios Br_{inv} for a Standard Model (SM) Higgs
particle are currently consistent with the experimental hints of a scalar
resonance at the mass scale m_h ~ 124 GeV. For this mass scale, we find
Br_{inv} < 0.64 (95 % CL) from a global fit to individual channel signal
strengths supplied by ATLAS, CMS and the Tevatron collaborations. Novel tests
that can be used to improve the prospects of experimentally discovering the
existence of a Br_{inv} with future data are proposed. These tests are based on
the combination of all visible channel Higgs signal strengths, and allow us to
examine the required reduction in experimental and theoretical errors in this
data that would allow a more significantly bounded invisible branching ratio to
be experimentally supported. We examine in some detail how our conclusions and
method are affected when a scalar resonance at this mass scale has couplings
deviating from the SM ones.Comment: 32pp, 15 figures v2: JHEP version, ref added & comment added after
Eq.
Anomalous Couplings in Double Higgs Production
The process of gluon-initiated double Higgs production is sensitive to
non-linear interactions of the Higgs boson. In the context of the Standard
Model, studies of this process focused on the extraction of the Higgs trilinear
coupling. In a general parametrization of New Physics effects, however, an even
more interesting interaction that can be tested through this channel is the
(ttbar hh) coupling. This interaction vanishes in the Standard Model and is a
genuine signature of theories in which the Higgs boson emerges from a
strongly-interacting sector. In this paper we perform a model-independent
estimate of the LHC potential to detect anomalous Higgs couplings in
gluon-fusion double Higgs production. We find that while the sensitivity to the
trilinear is poor, the perspectives of measuring the new (ttbar hh) coupling
are rather promising.Comment: 22 pages, 9 figures. v2: plots of Figs.8 and 9 redone to include
experimental uncertainty on the Higgs couplings, references adde
One-Loop Calculation of the Oblique S Parameter in Higgsless Electroweak Models
We present a one-loop calculation of the oblique S parameter within Higgsless
models of electroweak symmetry breaking and analyze the phenomenological
implications of the available electroweak precision data. We use the most
general effective Lagrangian with at most two derivatives, implementing the
chiral symmetry breaking SU(2)_L x SU(2)_R -> SU(2)_{L+R} with Goldstones,
gauge bosons and one multiplet of vector and axial-vector massive resonance
states. Using the dispersive representation of Peskin and Takeuchi and imposing
the short-distance constraints dictated by the operator product expansion, we
obtain S at the NLO in terms of a few resonance parameters. In
asymptotically-free gauge theories, the final result only depends on the
vector-resonance mass and requires M_V > 1.8 TeV (3.8 TeV) to satisfy the
experimental limits at the 3 \sigma (1\sigma) level; the axial state is always
heavier, we obtain M_A > 2.5 TeV (6.6 TeV) at 3\sigma (1\sigma). In
strongly-coupled models, such as walking or conformal technicolour, where the
second Weinberg sum rule does not apply, the vector and axial couplings are not
determined by the short-distance constraints; but one can still derive a lower
bound on S, provided the hierarchy M_V < M_A remains valid. Even in this less
constrained situation, we find that in order to satisfy the experimental limits
at 3\sigma one needs M_{V,A} > 1.8 TeV.Comment: 34 pages, 9 figures. Version published in JHEP. Some references and
sentences have been added to facilitate the discussio
Global Analysis of the Higgs Candidate with Mass ~ 125 GeV
We analyze the properties of the Higgs candidate with mass ~ 125 GeV
discovered by the CMS and ATLAS Collaborations, constraining the possible
deviations of its couplings from those of a Standard Model Higgs boson. The
CMS, ATLAS and Tevatron data are compatible with Standard Model couplings to
massive gauge bosons and fermions, and disfavour several types of composite
Higgs models unless their couplings resemble those in the Standard Model. We
show that the couplings of the Higgs candidate are consistent with a linear
dependence on particle masses, scaled by the electroweak scale ~ 246 GeV, the
power law and the mass scale both having uncertainties ~ 20%.Comment: 22 pages, 9 figures, v2 incorporates experimental data released
during July 2012 and corrected (and improved) treatment of mass dependence of
coupling
Estrogen-dependent dynamic profile of eNOS-DNA associations in prostate cancer
In previous work we have documented the nuclear translocation of endothelial NOS (eNOS) and its participation in combinatorial complexes with Estrogen Receptor Beta (ERβ) and Hypoxia Inducible Factors (HIFs) that determine localized chromatin remodeling in response to estrogen (E2) and hypoxia stimuli, resulting in transcriptional regulation of genes associated with adverse prognosis in prostate cancer (PCa). To explore the role of nuclear eNOS in the acquisition of aggressive phenotype in PCa, we performed ChIP-Sequencing on chromatin-associated eNOS from cells from a primary tumor with poor outcome and from metastatic LNCaP cells. We found that: 1. the eNOS-bound regions (peaks) are widely distributed across the genome encompassing multiple transcription factors binding sites, including Estrogen Response Elements. 2. E2 increased the number of peaks, indicating hormone-dependent eNOS re-localization. 3. Peak distribution was similar with/without E2 with ≈ 55% of them in extragenic DNA regions and an intriguing involvement of the 5′ domain of several miRs deregulated in PCa. Numerous potentially novel eNOS-targeted genes have been identified suggesting that eNOS participates in the regulation of large gene sets. The parallel finding of downregulation of a cluster of miRs, including miR-34a, in PCa cells associated with poor outcome led us to unveil a molecular link between eNOS and SIRT1, an epigenetic regulator of aging and tumorigenicity, negatively regulated by miR-34a and in turn activating eNOS. E2 potentiates miR-34a downregulation thus enhancing SIRT1 expression, depicting a novel eNOS/SIRT1 interplay fine-tuned by E2-activated ER signaling, and suggesting that eNOS may play an important role in aggressive PCa
Local optical spectroscopy of semiconductor nanostructures in the linear regime
We present a theoretical approach to calculate the local absorption spectrum of excitons confined in a semiconductor nanostructure. Using the density-matrix formalism, we derive a microscopic expression for the nonlocal susceptibility, both in the linear and nonlinear regimes, which includes a three-dimensional description of electronic quantum states and their Coulomb interaction. The knowledge of the nonlocal susceptibility allows us to calculate a properly defined local absorbed power, which depends on the electromagnetic field distribution. We report on explicit calculations of the local linear response of excitons confined in single and coupled T-shaped quantum wires with realistic geometry and composition. We show that significant interference effects in the interacting electron-hole wave function induce new features in the space-resolved optical spectra, particularly in coupled nanostructures. When the spatial extension of the electromagnetic field is comparable to the exciton Bohr radius, Coulomb effects on the local spectra must be taken into account for a correct assignment of the observed features
- …