150 research outputs found

    The effect of thermophoresis on the discharge parameters in complex plasma experiments

    Full text link
    Thermophoresis is a tool often applied in complex plasma experiments. One of the usual stated benefits over other experimental tools is that changes induced by thermophoresis neither directly depend on, nor directly influence, the plasma parameters. From electronic data, plasma emission profiles in the sheath, and Langmuir probe data in the plasma bulk, we conclude that this assumption does not hold. An important effect on the levitation of dust particles in argon plasma is observed as well. The reason behind the changes in plasma parameters seems to be the change in neutral atom density accompanying the increased gas temperature while running at constant pressure.Comment: 14 pages, 12 figure

    Greek community needs assessment: Reducing the negative impact of alcohol and drugs

    Get PDF
    Participants representing Clemson\u27s Greek community have designed a research project that aims to define the problems associated with alcohol and drug misuse in the Greek community at Clemson University and to implement action steps based on sound evidence to mitigate the negative consequences associated with that misuse. The team is made up of Greek student leaders who are passionate about making a difference in their community and ultimately creating a plan to reduce alcohol and drug abuse among members. The team has conducted IRB and National PanHellenic approved focus groups and is in the process of coding the data. This poster reflects a preliminary analysis of that data

    Fokker-Planck Equation for Boltzmann-type and Active Particles: transfer probability approach

    Full text link
    Fokker-Planck equation with the velocity-dependent coefficients is considered for various isotropic systems on the basis of probability transition (PT) approach. This method provides the self-consistent and universal description of friction and diffusion for Brownian particles. Renormalization of the friction coefficient is shown to occur for two dimensional (2-D) and three dimensional (3-D) cases, due to the tensorial character of diffusion. The specific forms of PT are calculated for the Boltzmann-type of collisions and for the absorption-type of collisions (the later are typical for dusty plasmas and some other systems). Validity of the Einstein's relation for the Boltzmann-type collisions is analyzed for the velocity-dependent friction and diffusion coefficients. For the Boltzmann-type collisions in the region of very high grain velocity as well as it is always for non-Boltzmann collisions, such as, e.g., absorption collisions, the Einstein relation is violated, although some other relations (determined by the structure of PT) can exist. The generalized friction force is investigated in dusty plasma in the framework of the PT approach. The relation between this force, negative collecting friction force and scattering and collecting drag forces is established.+AFwAXA- The concept of probability transition is used to describe motion of active particles in an ambient medium. On basis of the physical arguments the PT for a simple model of the active particle is constructed and the coefficients of the relevant Fokker-Planck equation are found. The stationary solution of this equation is typical for the simplest self-organized molecular machines.+AFwAXA- PACS number(s): 52.27.Lw, 52.20.Hv, 52.25.Fi, 82.70.-yComment: 18 page

    Long-range attraction between particles in dusty plasma and partial surface tension of dusty phase boundary

    Full text link
    Effective potential of a charged dusty particle moving in homogeneous plasma has a negative part that provides attraction between similarly charged dusty particles. A depth of this potential well is great enough to ensure both stability of crystal structure of dusty plasma and sizable value of surface tension of a boundary surface of dusty region. The latter depends on the orientation of the surface relative to the counter-ion flow, namely, it is maximal and positive for the surface normal to the flow and minimal and negative for the surface along the flow. For the most cases of dusty plasma in a gas discharge, a value of the first of them is more than sufficient to ensure stability of lenticular dusty phase void oriented across the counter-ion flow.Comment: LATEX, REVTEX4, 7 pages, 6 figure

    Measuring Strategic Uncertainty in Coordination Games

    Get PDF
    Lecture on the first SFB/TR 15 meeting, Gummersbach, July, 18 - 20, 2004This paper explores predictability of behavior in coordination games with multiple equilibria. In a laboratory experiment we measure subjects' certainty equivalents for three coordination games and one lottery. Attitudes towards strategic uncertainty in coordination games are related to risk aversion, experience seeking, gender and age. From the distribution of certainty equivalents among participating students we estimate probabilities for successful coordination in a wide range of coordination games. For many games success of coordination is predictable with a reasonable error rate. The best response of a risk neutral player is close to the global-game solution. Comparing choices in coordination games with revealed risk aversion, we estimate subjective probabilities for successful coordination. In games with a low coordination requirement, most subjects underestimate the probability of success. In games with a high coordination requirement, most subjects overestimate this probability. Data indicate that subjects have probabilistic beliefs about success or failure of coordination rather than beliefs about individual behavior of other players

    Dynamical correlations and collective excitations of Yukawa liquids

    Full text link
    In dusty (complex) plasmas, containing mesoscopic charged grains, the grain-grain interaction in many cases can be well described through a Yukawa potential. In this Review we summarize the basics of the computational and theoretical approaches capable of describing many-particle Yukawa systems in the liquid and solid phases and discuss the properties of the dynamical density and current correlation spectra of three- and two-dimensional strongly coupled Yukawa systems, generated by molecular dynamics simulations. We show details of the ω(k)\omega(k) dispersion relations for the collective excitations in these systems, as obtained theoretically following the quasilocalized charge approximation, as well as from the fluctuation spectra created by simulations. The theoretical and simulation results are also compared with those obtained in complex plasma experiments.Comment: 54 pages, 31 figure

    Microfluidic device facilitates in vitro modeling of human neonatal necrotizing enterocolitis-on-a-chip

    Get PDF
    Necrotizing enterocolitis (NEC) is a deadly gastrointestinal disease of premature infants that is associated with an exaggerated inflammatory response, dysbiosis of the gut microbiome, decreased epithelial cell proliferation, and gut barrier disruption. We describe an in vitro model of the human neonatal small intestinal epithelium (Neonatal-Intestine-on-a-Chip) that mimics key features of intestinal physiology. This model utilizes intestinal enteroids grown from surgically harvested intestinal tissue from premature infants and cocultured with human intestinal microvascular endothelial cells within a microfluidic device. We used our Neonatal-Intestine-on-a-Chip to recapitulate NEC pathophysiology by adding infant-derived microbiota. This model, named NEC-on-a-Chip, simulates the predominant features of NEC, including significant upregulation of proinflammatory cytokines, decreased intestinal epithelial cell markers, reduced epithelial proliferation, and disrupted epithelial barrier integrity. NEC-on-a-Chip provides an improved preclinical model of NEC that facilitates comprehensive analysis of the pathophysiology of NEC using precious clinical samples. This model is an advance toward a personalized medicine approach to test new therapeutics for this devastating disease

    Particles as probes for complex plasmas in front of biased surfaces

    Get PDF
    An interesting aspect in the research of complex (dusty) plasmas is the experimental study of the interaction of micro-particles with the surrounding plasma for diagnostic purposes. Local electric fields can be determined from the behaviour of particles in the plasma, e.g. particles may serve as electrostatic probes. Since in many cases of applications in plasma technology it is of great interest to describe the electric field conditions in front of floating or biased surfaces, the confinement and behaviour of test particles is studied in front of floating walls inserted into a plasma as well as in front of additionally biased surfaces. For the latter case, the behaviour of particles in front of an adaptive electrode, which allows for an efficient confinement and manipulation of the grains, has been experimentally studied in dependence on the discharge parameters and on different bias conditions of the electrode. The effect of the partially biased surface (dc, rf) on the charged micro-particles has been investigated by particle falling experiments. In addition to the experiments we also investigate the particle behaviour numerically by molecular dynamics, in combination with a fluid and particle-in-cell description of the plasma.Comment: 39 pages, 16 figures, submitted to New J. Phy

    Plasma synthesis of single crystal silicon nanoparticles for novel electronic device applications

    Full text link
    Single-crystal nanoparticles of silicon, several tens of nm in diameter, may be suitable as building blocks for single-nanoparticle electronic devices. Previous studies of nanoparticles produced in low-pressure plasmas have demonstrated the synthesis nanocrystals of 2-10 nm diameter but larger particles were amorphous or polycrystalline. This work reports the use of a constricted, filamentary capacitively coupled low-pressure plasma to produce single-crystal silicon nanoparticles with diameters between 20-80 nm. Particles are highly oriented with predominant cubic shape. The particle size distribution is rather monodisperse. Electron microscopy studies confirm that the nanoparticles are highly oriented diamond-cubic silicon.Comment: accepted for publication in Plasma Physics and Controlled Fusion, scheduled for Dec. 2004 F
    • …
    corecore