11,423 research outputs found

    Density functional theory modeling of vortex shedding in superfluid He-4

    Full text link
    Formation of vortex rings around moving spherical objects in superfluid He-4 at 0 K is modeled by time-dependent density functional theory. The simulations provide detailed information of the microscopic events that lead to vortex ring emission through characteristic observables such as liquid current circulation, drag force, and hydrodynamic mass. A series of simulations were performed to determine velocity thresholds for the onset of dissipation as a function of the sphere radius up to 1.8 nm and at external pressures of zero and 1 bar. The threshold was observed to decrease with the sphere radius and increase with pressure thus showing that the onset of dissipation does not involve roton emission events (Landau critical velocity), but rather vortex emission (Feynman critical velocity), which is also confirmed by the observed periodic response of the hydrodynamic observables as well as visualization of the liquid current circulation. An empirical model, which considers the ratio between the boundary layer kinetic and vortex ring formation energies, is presented for extrapolating the current results to larger length scales. The calculated critical velocity value at zero pressure for a sphere that mimics an electron bubble is in good agreement with the previous experimental observations at low temperatures. The stability of the system against symmetry breaking was linked to its ability to excite quantized Kelvin waves around the vortex rings during the vortex shedding process. At high vortex ring emission rates, the downstream dynamics showed complex vortex ring fission and reconnection events that appear similar to those seen in previous Gross-Pitaevskii theory-based calculations, and which mark the onset of turbulent behavior.Comment: 23 pages, 7 figure

    Optical signature of the pressure-induced dimerization in the honeycomb iridate α\alpha-Li2_2IrO3_3

    Get PDF
    We studied the effect of external pressure on the electrodynamic properties of α\alpha-Li2_2IrO3_3 single crystals in the frequency range of the phonon modes and the Ir dd-dd transitions. The abrupt hardening of several phonon modes under pressure supports the onset of the dimerized phase at the critical pressure PcP_c=3.8 GPa. With increasing pressure an overall decrease in spectral weight of the Ir dd-dd transitions is found up to PcP_c. Above PcP_c, the local (on-site) dd-dd excitations gain spectral weight with increasing pressure, which hints at a pressure-induced increase in the octahedral distortions. The non-local (intersite) Ir dd-dd transitions show a monotonic blue-shift and decrease in spectral weight. The changes observed for the non-local excitations are most prominent well above PcP_c, namely for pressures ≥\geq12 GPa, and only small changes occur for pressures close to PcP_c. The profile of the optical conductivity at high pressures (∼\sim20 GPa) appears to be indicative for the dimerized state in iridates.Comment: 10 pages, 6 figures; accepted for publication in Phys. Rev.

    Fallstudie Axa Winterthur : intelligenter Distributionsanfrageprozess

    Get PDF
    Mitarbeitende in Vertrieb und Underwriting von zeitraubenden Routineaufgaben zu entlasten, damit sie sich auf ihre Kunden und fachliche Aspekte konzentrieren können, war die Zielsetzung des Projekts der Axa Winterthur, das in der vorliegenden Fallstudie beschreiben wird. Mit der Standardisierung des Distributionsanfrageprozesses und der Einführung einer Workflowlösung inklusive Business Rules konnte eine flexible Lösung geschaffen werden, die sich nicht nur auf andere Geschäftsbereiche übertragen lässt, sondern sich durch die zentrale Wissensbasis und auswertbare operative Daten weiter in Richtung eines entscheidungsunterstützenden und lernenden Systems entwickeln kann

    Drip and Mate Operations Acting in Test Tube Systems and Tissue-like P systems

    Full text link
    The operations drip and mate considered in (mem)brane computing resemble the operations cut and recombination well known from DNA computing. We here consider sets of vesicles with multisets of objects on their outside membrane interacting by drip and mate in two different setups: in test tube systems, the vesicles may pass from one tube to another one provided they fulfill specific constraints; in tissue-like P systems, the vesicles are immediately passed to specified cells after having undergone a drip or mate operation. In both variants, computational completeness can be obtained, yet with different constraints for the drip and mate operations

    Clathrate type 2 hydrate formation in vacuo under astrophysical conditions

    Get PDF
    The properties of clathrate hydrates were used to explain the complex and poorly understood physical processes taking place within cometary nuclei and other icy solar system bodies. Most of all the experiments previously conducted used starting compositions which would yield clathrate types I hydrates. The main criterion for type I vs. type II clathrate hydrate formation is the size of the guest molecule. The stoichiometry of the two structure types is also quite different. In addition, the larger molecules which would form type II clathrate hydrates typically have lower vapor pressures. The result of these considerations is that at temperatures where we identified clathrate formation (120-130 K), it is more likely that type II clathrate hydrates will form. We also formed clathrate II hydrates of methanol by direct vapor deposition in the temperature range 125-135 K

    High-pressure versus isoelectronic doping effect on the honeycomb iridate Na2_2IrO3_3

    Get PDF
    We study the effect of isoelectronic doping and external pressure in tuning the ground state of the honeycomb iridate Na2_2IrO3_3 by combining optical spectroscopy with synchrotron x-ray diffraction measurements on single crystals. The obtained optical conductivity of Na2_2IrO3_3 is discussed in terms of a Mott insulating picture versus the formation of quasimolecular orbitals and in terms of Kitaev-interactions. With increasing Li content xx, (Na1−x_{1-x}Lix_x)2_2IrO3_3 moves deeper into the Mott insulating regime and there are indications that up to a doping level of 24\% the compound comes closer to the Kitaev-limit. The optical conductivity spectrum of single crystalline α\alpha-Li2_2IrO3_3 does not follow the trends observed for the series up to x=0.24x=0.24. There are strong indications that α\alpha-Li2_2IrO3_3 is less close to the Kitaev-limit compared to Na2_2IrO3_3 and closer to the quasimolecular orbital picture. Except for the pressure-induced hardening of the phonon modes, the optical properties of Na2_2IrO3_3 seem to be robust against external pressure. Possible explanations of the unexpected evolution of the optical conductivity with isolectronic doping and the drastic change between x=0.24x=0.24 and x=1x=1 are given by comparing the pressure-induced changes of lattice parameters and the optical conductivity with the corresponding changes induced by doping.Comment: 12 pages, 6 figures, accepted for publication in Phys. Rev.

    A Multivariate Training Technique with Event Reweighting

    Get PDF
    An event reweighting technique incorporated in multivariate training algorithm has been developed and tested using the Artificial Neural Networks (ANN) and Boosted Decision Trees (BDT). The event reweighting training are compared to that of the conventional equal event weighting based on the ANN and the BDT performance. The comparison is performed in the context of the physics analysis of the ATLAS experiment at the Large Hadron Collider (LHC), which will explore the fundamental nature of matter and the basic forces that shape our universe. We demonstrate that the event reweighting technique provides an unbiased method of multivariate training for event pattern recognition.Comment: 20 pages, 8 figure

    Finite-distance singularities in the tearing of thin sheets

    Full text link
    We investigate the interaction between two cracks propagating in a thin sheet. Two different experimental geometries allow us to tear sheets by imposing an out-of-plane shear loading. We find that two tears converge along self-similar paths and annihilate each other. These finite-distance singularities display geometry-dependent similarity exponents, which we retrieve using scaling arguments based on a balance between the stretching and the bending of the sheet close to the tips of the cracks.Comment: 4 pages, 4 figure

    A q-deformation of the Coulomb problem

    Get PDF
    The algebra of observables of SO_{q}(3)-symmetric quantum mechanics is extended to include the inverse \frac{1}{R} of the radial coordinate and used to obtain eigenvalues and eigenfunctions of a \q-deformed Coulomb Hamiltonian
    • …
    corecore