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ABSTRACT. An event reweighting technique incorporated in multigéeitraining algorithms has

been developed and tested with Artificial Neural Network&NB and Boosted Decision Trees
(BDT). The performance of the ANNs and BDTs resulting frons tevent reweighting training is

compared to the performance from conventional equal eveighing training. The comparison

is performed in the context of physics analysis in the ATLA®e&iment at the Large Hadron

Collider (LHC), which will explore the fundamental naturé matter and the basic forces that
shape our universe. We demonstrate that the event rewmjgtechnique provides an unbiased
method of multivariate training for event pattern recoigmit
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1. Introduction

Artificial Neural Networks (ANN) and Boosted Decision Tre@&DT) [fl, B, [3.[#.[b.[B] are two
important data analysis tools that have wide applicatioHligh Energy Physics experiments for
particle identification and for event pattern recogniti¢h [, [9,[IP]. Both methods 'train’ the
'networks’ or the 'trees’ based on a set of 'signal’ and 'bagdund’ features (physical quantities)
to obtain a powerful discriminant variable that distindgwgs signal from background. This process
is called 'event pattern recognition’ in physics data asly In the conventional ANN and BDT
algorithms for high energy physics analysis, the trainmgneés (including signal and background)
are initialized with equal weights. The equal event weightning technique works fine if the
Monte Carlo (MC) samples from different physics processesidor training are generated based
on their production rates. In physics studies, we need te kawy large MC 'background’ event
samples to determine the rates of the misclassified evemtsdifferent processes that contaminate
the signal (normally a few times more MC data than real dateeeded for a certain integrated
luminosity). However, for hadron colliders such as the leak§adron Collider at CERN (LHC,
http://cern.ch/) and Tevatron at Fermilab (http://wwwlfgov/), it is unrealistic and inefficient
to generate MC data for all the physics processes with fukater simulations based on their
production rates. This is simply because of limited CPU tand data storage capacity. To simulate
and reconstruct an event for the ATLAS experiment, typicatlwould take about 10 minutes of
CPU time and about 2.5 MB of storage space per event. The &imultime is many orders of
magnitude longer than the event created from the beamiookis



Combining statistically limited MC events from differenhysics processes raises a natural
guestion on the multivariate training process in event Wwg. Suppose that 100K MC events are
generated for each of background A and background B. Suppoaéddition, we expect 80% of the
background to be from A and 20% from B. What is proposed in thentreweighting technique
is that the events are reweighted for training, so that 80%hetotal weight is from A and 20% is
from B, i.e. each event from A has 4 times the weight as an dvemt B. We implemented this
idea in ANN and BDT training programs and tested this tecmimn the context of the ATLAS
experiment with fully simulated MC datasets.

ATLAS (http://atlas.web.cern.ch/) is one of two generajgmse detectors at the LHC (a 27 km
circumference particle accelerator that will collide nag head-on with a center of mass energy of
14 TeV) being built at the European Center for Nuclear Rese@CERN) in Geneva, Switzerland.
The ATLAS experiment is designed to search for signals thatld/respond to the electroweak
symmetry breaking. Some theoretic models predicted sighaih as standard model Higgs bosons,
supersymmetric particles, and new bosons from extra dimess Discovering any one of those
signals at the LHC would be a great breakthrough in our utaeding of particle physics. The
LHC will begin operation in 2008. A major part of preparing tdHC physics analysis is to develop
and test advanced data analysis tools.

In this paper, we use ATLAS MC samples #WZ ! ‘v ‘‘ analysis to demonstrate that using
event reweighting technique will provide an unbiased trajin ANN and BDT multivariate anal-
ysis. Our 'signal’ is from theN Z triple-lepton decay channelede/, eeuv, puev and uppv).
Major backgrounds come from standard model processes sutia- jets ZZandDrell Yan
Those backgrounds have production rates 3-4 orders of malgnlarger than that of the signal
process. Our goals are to maximize signal efficiency, to miiré background efficiency and to
understand the uncertainties with limited training and sasnples.

For comparing the performance of the ANN and the BDT with ctheut event reweighting
training, we used the same testing sample (statisticalpigragent of training sample). The main
purpose of this paper is to compare the training performavitte and without event reweighting.
Performance comparisons between ANN and BDT can be founkeircontexts of MiniBooNE
neutrino oscillation analysig[g} 4], DO single top disco{fl] and B-taggind[10].

In section 2 we provide the MC signal and background inforomatincluding the physics
processes, the production cross-sections at the LHC, taedimnulated MC event size and the
training sample size after pre-selection. We also givefloiéscriptions of physics variables for
both the ANN and the BDT analysis. The event reweightingnitrey techniques for BDT and
ANN are presented in section 3. Performance comparisondifi@rent weighting methods are
summarized in section 4. Section 5 presents uncertaintyy stesults and section 6 gives our
conclusions.

2. MC Samples and Training Variables

Monte Carlo samples used in this study are from the ATLAS Qaiing System Commissioning
(CSC) [11] with full detector simulation and reconstructid=or this study we used a few loose cuts
to pre-select events with the approximate experimentaldige of the signal, then the pre-selected
events are analyzed using the ANN and BDT multivariate @ogrto further separate signal from



background events. In Tadg 1 we list the MC and pre-seledtiormation for the signalW 2)
and background MC events used in this study. This informatioludes the total production cross-
sections @wuc) [[L3], the triple-lepton decay branching ratirj, the total number of simulated MC
events Nvc), the number of pre-selected evem;t@,@wt) and the number of expected everig,()
normalized to 1 fb' integrated luminosity (Ldt) after the pre-selection. The initial event weight
for each process is listed in Talﬂe 1 as well. The cross@aectrrection factorK, in the Table[|1 is
defined as the ratio of the next-to-leading order (NLO) cisesstion to the cross-section obtained
from the MC generators. Thus, if we used a NLO MC generatar,Khvalue is 1. Otherwise, if
a LO MC generator is used, the K valuedgNLO)=0 (LO) (o denotes the cross-section). The
expected number of events for 1 1 Nexp and the event'sveightlisted in Tabld]1 are calculated

based on R
omc K Br ( Ldt) Nprecut

Nmc

Nexp=

and R
omc K Br ( Ldt) .

Nmc '
The integrated IuminosityR(Ldt) is a constant (1 fi ) for all the MC process, so the event weight
of a given MC process depends on its production cross-seatecay branching ratio and the total
number of MC events generatddy\(c). For a given MC process, a larger event weight means lower
statistics for analysis. In general, higher MC statisties desired to reduce statistical uncertainty
for data analysis. Evidently, the event weights vary dracadly among the various MC processes
as shown in Tablf 1.

The pre-selection applied loose cuts to all datasets byinmaguwo leptons with invariant
mass consistent with thé mass and an additional lepton with missing transverse griergiing
a transverse mass consistent with the W boson mass. Thelpisen also requires that at least
one lepton have transverse momentum greater than 20 GeVisfydhe trigger requirements of
the experiment.

The physics variables input into the ANN and BDT trainings selected based on our our ex-
perience with cut-based analysis (optimized to separgteakirom background), and the variable
'Gini” index determined from the decision treefj [2]. Thisléx indicates the separation power be-
tween signal and background of a variable. We give brief ggsens of these variables, separated
into four categories.

Weight=

Energy and Momentum

The characteristics of energy and momentum are differemt the WZ events and the back-
ground events. For example,events will have larger hadronic jet energies comparedeo th
W Zevents, theZ + X background will have lower missing transverse energy anohsd he
energy and momentum variables we used are

— Py - lepton transverse momentum, three variables (two lepdenay from Z, one lepton
decays from W),
— MET - missing transverse energy,

— MET significance which is defined M;ET yi 5 Et (), (iis the index counting leptons
and jets),



— EN - vector sum of transverse momentum from leptons T,
— Ht - scalar sum of transverse momentum from jets, leptons\iad,
-3 E%et - sum of transverse energy from each jet,
— Pr W 2Z) - transverse momentum @f Z bosons,
— Efecoll - total recoil transverse energy.
Lepton isolations
The leptons from th& andZ decays are isolated, but leptons from the QCD jets are not

isolated. Typically, the QCD jets have multiple tracks aadyér energy deposition around
the leptons. The isolation variables we used are

— N{$°- number of charged tracks &R < 04 cone around a leptoAR = F DR+ An P,
three variables (two leptons decay from Z, one lepton defrays W),
— 3 Pi° - sum of trackPr in aAR < 04 cone around a lepton,
-5 EiTSO - sum of jet transverse energy AR < 04 cone around a lepton,
— fis°- fraction of energy = [EfR < 04)-EQQR< 02)]/E;.
Event topologies

The following variables are selected to suppress top and {@C&ents and to separate fake
lepton events from the/ Z signal:

— AR(*;*%) - separation between two leptons, 2 variables (one leptoaydefrom W, the
other lepton decays from Z),

— AA - vertex difference between leptons in transverse planpdanparameter), 2 vari-
ables (one lepton decays from W, the other lepton decays Zom

Mass information
The mass information is used to reduce QCD #rishckground events with leptons (or fake
leptons) that do not decay frodhandW. Two variables are used in our analysis:

— M.. - invariant mass of two leptons fro&h decays,
— Mt (“;MET) - transverse mass of a lepton avdE T (neutrino) fromW decays.

For variable distribution shape comparisons, we show sameegg and momentum variable

distributions for signal and background in Fig{ire 1 and seer@ble distributions related to lepton
isolation, event topology and mass in Figfe 2. All the esénthe plots are passed pre-selection
cuts and each signal (black histograms) and backgroungbdison is normalized to the same area.

Figure[B and [J4 show the same variable distributions with eweighting. In these plots,

the background histograms are stacked, with areas refigitterelative weights. For comparison,
total background events and total signal events are naathto the same area, respectively.

From the variable distributions (both for signal and backmd), we found that a single vari-

able has limited power to separate signal from background, Bhen combining these variables
using ANN or BDT, the signal and background could be well saea, particularly when the
proper event reweighting algorithm is used in the multizgrianalysis.



The BDT program provides a sensitive measure to indicatssitfreal and background sepa-
ration effectiveness of each input variable based on thé iGitex contribution [R]. We list the
Gini index contributions of the input variables in our arsdyfor both event reweighting and equal
weighting cases in Tabl¢ 2. For each variable, a larger @itex indicates a relatively larger con-
tribution to the overall signal to background separatiomonfr the Gini index listed in this table
we know that the lepton isolation and mass variables areceslyeeffective at separating the WZ
signal from various background events. However, for equebhting training, the BDT algorithm
tends to focus on separating the WZ signal from the ZZ baekggtanainly because the ZZ events
dominate the background training sample after the prezgete

3. Event Reweighting Training Technique

As we mentioned in Section 2, the event weights of various M&gsses are quite different. MC
samples with larger event weights represent lower stegisélative to cross-section and vice versa.
Forinstance, the M@p! ZZ! ‘‘‘“sample has atotal of 35700 events (before the pre-sel¢ction
A total cross section of 18860 fb (NLO) and a four-lepton gelseanching ratio of 0.0045 means
that for 1 fo! integrated luminosity the total number of expec&d ! ‘‘‘“is about 85. Thus,
theZZ event weight is 0.0024, as listed in TaEle 1. In contrastDtedl-Yan sample at the Z mass
(pp! Z(*** y(Mz= 81 100GeV)) contains 3.28 million events and yet the NLO cross-section
and branching ratio indicate that 1.85 times as many evér®$ (nillion) are expected in 1b *
integrated luminosity, thus this sample has a weight of.1.85

If we treat these MC events from different sources equallpgisonventional training tech-
niques, then multivariate training methods for ANNs and BDOWill focus disproportionately on
the MC events with lower event weights. This is because tkusats have a higher probability of
being selected for the ANN training relative to their ratepodduction in the experiment. In the
BDT training process, a sample with larger statistics nadato cross-section will have relatively
larger total event weight. This will affect which variablase chosen to be split in the tree and
the value at which the splitting cut occurs. For example, un @analysis undue emphasis would
be put on the variables separating v background from signal. To avoid this training prejudice
we used event reweighting for the ANN and BDT training. Asslrated above, the event weights
for different physics processes are independent of pexgeh as shown in the Weight definition
expression in section 2 and Taljle 1. As will be describederfoiowing subsections, the sums of
all the weights of training signal or background eventsraite-selection are normalized to 1.

3.1 BDT Reweighting

In the BDT training process we start willy pre-selected signal ard,g pre-selected background
events. In the traditional BDT algorithfif[P], 3] using equatiet weighting for training, the initial

weights of signal and background events hig¢ and Nbé, respectively. The total signal event
weight and the total background event weight are each narethto 1. We implement the event
reweighting training technique for BDT by initializing tiveeights of all the training events to the
event weightsWTs(i);i = 1,;2;:::;;Ns for signal eventsW Ty (i);i = 1,;2;:::;;Npg for background

events) listed in Tablg 1, then we normalize the total sigreht weight and the total background



event weight each to 1. For signal events, the initial weighBDT training is
WEs (i) = WTs()>-WTOT;i = 1;2;:::Ns;

where N
WTOE= Y WTs(i):
2WE

For background events, the initial weight for BDT trainirgg i
Wiog (j) = WThg(j )W T OThg;j = 1;2;:::5Npg;

where
Nbg

WTObg = ZWTbg(j ):
=1

In our analysis, we have used the boost algorithm[[2] withe = 0:01. For the BDT training we
used 1000 tree iterations and 20 terminal leaves per dedise.

3.2 ANN Reweighting

For conventional ANN training both signal and backgroundrds are selected randomly with the
same probability for each training iteration. This is thei@gevent weighting training technique.
When we have multiple sources of background events wittemifft production cross-sections
from the proton-proton collisions the equal event weigiptirmining technique may not work well,
particularly when the number of background events in thiitng sample are not proportional
to the production cross-sections. Effectively, the baokgd events with large cross-section are
underrepresented, and don't receive appropriate trairfdtg we developed the event reweighting
algorithm to improve the training process for ANN. The bddiea of the event reweighting tech-
nigue is to modify the probability of a given event to be stdddor the ANN training. For all the
MC events, the reweighting (determination of the probahikhould be automatically included in
the ANN program, which reflects the weights of the underlyptysics. We briefly describe our
algorithm below.

Suppose we have three different background samples, A, BEamtiese samples hai, Ng
andN¢ events, respectively. Based on production cross-sectindghe pre-selection efficiencies,
we expect the background contributions from sample A, B,@radte 50%, 30% and 20% respec-
tively. Thus, sample A events should have 50% probabilithdcselected for training, sample B
and C should have 30% and 20% probabilities to be selectetidiming, respectively. So, the
probabilities of selecting a single training event in backond samples A, B and C are 50%/
30%MNg and 20%Nc, respectively.

The general algorithm, as implemented in the code is thevdtig,

start with weights of training signal and background evdisted in Tablf]1,
wt(j); j=1;2;::5N; (i = signal or background),

calculate accumulated weights for eventvt_sumj ):
wt_sum(j)= wt_sum(j 1)+ wt(j); = 2;::N,



generate a random number with uniform distribution in a af0;wt_sumN )]

select an event for the ANN training by minimizing the gemedarandom numbeR and

iterate the above process many times for the ANN training.

The event reweighting training technique can be appliechtious ANN algorithms. For this
analysis, we used a back-propagation neural network withettayers, one input, one hidden and
one output layer. There are 22 nodes in both the input ancehitidyers, and there is one output
node. The neuron response is a sigmoid function. The legunaite isn = 005, the momentum is
a = 007 and 1,000,000 training cycles are used for the ANN trginithe general description of
the ANN can be found in section 6.8 of the TMVA User gu[de[1].

4. Application and Results

The MC signaWz ! ‘v and all the background pre-selected events are split intorarly
equal samples. Odd and even numbered events in each MC paresgrouped into sample A and
B, respectively. Sample A and B are statistically indepahd&/e use sample A for training and
then use sample B for testing.

The training sample had 5983 signal and 7907 backgroundtevdie testing sample had
5983 signal and 7894 background events. We performed the amNthe BDT analysis by using
equal weight and reweighting techniques. We show both tesulFigure[p and Figurf] 6. The
results shown in these plots are for the testing sample. r&[shows the ANN analysis results
and Figurd]6 shows the BDT results. In both figures, the tofs gloow the analysis with the event
reweighting technique and the bottom plots show results thi¢ equal weight technique. In those
plots, the solid histograms are for the signal and the ddtistbgrams are for the backgrounds.
Both signal and backgrounds are normalized to 1 fintegrated luminosity.

As we expected, the signal events are mainly distributechimraa close to 1 in the ANN
output spectrum, and the background events are distribtltesk to O (see Figurgd 5). The top
plot of Figure[b, the ANN output spectrum produced with theeighting algorithm, shows that
the signal distribution is much sharper around an ANN outgut. However, with equal weight
training, the signal distribution near 1 is smeared out. Assllt, the signal selection efficiency
decreases significantly when using conventional technidiining with equal weights.

Similarly, we observed in Figurg 6 that the BDT output witheevreweighting training has
much better signal to background separation power (top ptotipared to that with equal weight-
ing event training (bottom plot).

By choosing the selection cuts on the ANN or the BDT outputspewe can determine the
number of selected signal and background events as weleaxtierimental signal to background
ratio. Our comparison of the analysis performance usinigmdint training techniques focuses on
the relative difference between signal and backgrounds the look at the number of selected
signal events versus background events as the selectimarmmes.

Comparisons of reweighting and equal weighting techniguiés the ANN and BDT analy-
ses are shown in Figufé 7, where we plot the expected numbaaakiground events versus the



number of signal events corresponding to an integratedriasity of 1 fbo! by varying the ANN
and the BDT output selection cuts. The black solid curveasgmts results from the BDT with
event reweighting for training; the red dashed curve shasslts from the BDT with equal event
weighting; the green dotted curve indicates results fromANN with event reweighting; and, the
blue dash-dotted curve shows results from the ANN with equaht weighting for training. From
these curves we see that, for the same number of sighal esadatded using ANN or BDT, using
the event reweighting technique gives much lower backgtoewrent contamination compared to
equal event weighting.

The numerical comparisons are shown in Tdble 3. We vary tleetsen cuts on the ANN and
BDT output spectra to keep the same number of signal evedtsh&m compare the background
contamination and the ratio of background contaminaticerd@ned from reweighting and equal
event weighting technigues. Our analysis shows that, coedpaith the equal weighting training,
the ANN and BDT trained with event reweighting reduce thekgaound by factors of about 5 7
and 6 10, respectively.

5. Uncertainty Studies

The reweighting technique will rely on our knowledge of tlvert production rates (cross-sections)
in the colliders. Thus, it is important to understand thetivatiate training stability with respect

to the production cross-section uncertainties of the MQcgsses. We looked at BDT training
to estimate these effects. We introduced 20% uncertaitdi¢ise event weights for our training

samples, while for the testing sample we have kept the 'ctorexent weights. Compared with

the original BDT performance without cross-section uraiettes, the relative changes of the BDT
performance with 20% cross-section uncertainties arethess about 6%, e.g. while keeping the
same number of signal events, the background contaminatareased by 4-7% depending on
cuts. This uncertainty is well within the 15-25% relative ®dlean-Squared (RMS) errors of
background efficiencies which will be described below.

Generally, a large training sample is desired for trainmgiultivariate algorithms. It is impor-
tant to understand what is a sufficient number of trainingiesssuch that the background efficiency
is insensitive to training sample size. To this end, we stidine background efficiencies and RMS
errors as a function of the number of training events for abgéiked signal efficiencies as shown
in Figure[. The training events are selected randomly véilacement from the training sample
with 5983 signal and 7907 background events for the BDT itmgirand a statistically independent
MC sample with 5983 signal and 7894 background events is fasa@sting. For each training
point, the BDT training-testing process is repeated 50gimith a different set of training samples
and a fixed testing sample to obtain the average backgrofin@geties and RMS errors for a given
set of signal efficiencies. Figuf¢ 8 indicates that fewer M€ngs for training will result in larger
background contaminations, presumably because the nuthib&€C events is insufficient to fully
train the BDTs. We also note that with at least 10000 trairemgnts the background efficiency
becomes relatively stable. We have used about 14000 evarigihing, thus we expect the bias
due to training sample size should be small.



6. Conclusions

We have developed and tested an event reweighting techtodae used when training multivari-

ate pattern recognition processes. This technique is sageto train the pattern recognition in an
unbiased way, particularly for multi-background procesa&h limited MC statistics. For the AT-

LASWZ ! “‘v‘‘analysis, with large background contributions from diffier physics processes,
we found that for good performance using the ANN and the BDdalyasis one should employ event
reweighting in the training process.
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pp! Zup My > 150GeV) 0.1750E+07| 0.8 | 0.0336 43000 33 36.1 | 1.0940
pp! Zupdet 0.8270E+06| 0.8 | 0.0336 35000 20 12.7 | 0.6351
pp! Zee(Pt> 100GeV) 0.8270E+06| 0.8 | 0.0336 46000 11 5.3 | 0.4833
pp! Zuu (Pt> 100GeV) 0.8270E+06| 0.8 | 0.0336 33000 42 28.3 | 0.6736
pp! Ztt (Pt> 100GeV) 0.8270E+06| 0.8 | 0.0003 32000 41 0.3 | 0.0069
pp! tt 0.7590E+06| 1.0 | 0.5550 604750 1071 746.0 | 0.6966
pp! Zy (Pt> 25GeV) 0.4510E+05| 1.0 | 0.0672 46800 43 2.8 | 0.0648
pp! WW ! e've v 0.1133E+06| 1.0 | 0.0120 41950 9 0.3 | 0.0324
pp! WW ! evu v 0.1133E+06| 1.0 | 0.0120 45900 22 0.7 | 0.0296
pp! WW ! evr v 0.1133E+06| 1.0 | 0.0120 71000 7 0.1 | 0.0191
pp! WW ! utve v 0.1133E+06| 1.0 | 0.0120 47000 18 0.5 | 0.0289
pp! WW | g Ve v 0.1133E+06| 1.0 | 0.0120 | 48950 30 08 | 0.0278
pp! WW ! utvr v 0.1133E+06| 1.0 | 0.0120 44000 8 0.2 | 0.0309
pp! WW ! Tt've v 0.1133E+06| 1.0 | 0.0120 47700 2 0.1 | 0.0285
pp! WW ! ttvu v 0.1133E+06| 1.0 | 0.0120 45800 8 0.2 | 0.0297
pp! WW ! 1fvr v 0.1133E+06| 1.0 | 0.0120 34850 0 0.0 | 0.0390
pp! ZzZ! e ot 0.1886E+05| 1.0 | 0.0045 35700 8597 20.4 | 0.0024

Table 1. Breakdown of MC samples used for ZW analysis.

http://www.hep.phy.cam.ac.uk/theory/webber/MCatNLO/
PYTHIA (v6.3) by T. Sjostrand et alComput. Phys. Commuyri.35 (2001) 238259
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Training Variables Gini Index Contribution(%)
Event Reweighting Equal Weighting
Prz! ) 241 1.46
I0 (tracks aroun& ! ‘ in AR< 04 cone) 4.53 2.13
Przt! ) 1.93 1.34
I0 (tracks aroun& ! “* in AR< 04 cone) 7.65 2.49
PrW t “) 4.16 3.01
5 PiSO (tracks aroundV ! ‘ in AR< 04 cone) 11.88 11.80
0 (tracks aroundv ! ‘ in AR< 04 cone) 20.56 14.56
s E0 (jets aroundV ! “ in AR< 04 cone) 2.07 5.83
fiso 2.05 457
AMZ! W 1) 3.26 2.73
ARZ ! W 1 1) 2.63 2.49
AMZ! * W 1 1) 4.17 3.12
ARZ! * W I *) 3.05 3.07
MET-missing transverse energy 3.90 10.26
PrW2) 1.59 3.88
M.. 9.70 4.22
Mt (/;MET) 7.55 6.67
H 0.91 0.94
5 E 0.91 1.73
Bl 0.72 6.03
MET= SiEr() 0.95 4.10
Erecoll 3.42 3.58

Table 2. Gini index contributions of input variables for BDT traimgjrusing event reweighting and equal
weighting techniquesZ ! “ means lepton decays from Z awd! ‘means lepton decays from W.

Nsignal | 60| 80| 100 120| 140| 160 ]
Npq: for ANN-equal-weighting | 30.5| 51.9| 72.4| 104.7 | 133.3| 177.6
Npp for ANN-event-reweighting. 5.8 | 7.7 | 9.8| 14.7| 25.9| 34.9
Ratio= Npg=Npg for ANN 53| 67| 7.4 7.1 51 51
Npgs for BDT-equal-weighting | 18.5| 39.4| 60.7| 69.1| 88.9| 110.1
Npgs for BDT-event-reweighting| 3.1 | 4.0| 6.3 84| 13.2| 19.3
Ratio= Npg=Nogs for BDT 6.0 9.9| 9.6 8.2 6.7 5.7

Table 3. Number of background eventblyy) versus number of signal eventss(yna) using the ANN and
BDT discriminating algorithms with equal weighting and etveeweighting training techniques.
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Figure 1. Distributions of the transverse momentum of leptons (tdf),l¢he transverse momentum of
the WZ system (top right), the missing transverse energhefavent (bottom left) and the vector sum of
transverse momenta from leptons aMdE T (bottom right). Among the histograms, black indicates ZW

signal events, red indicatés green indicates Z plus jets, blue indicai#s !

¢4+ and pink indicates a

combination of all backgrounds. All histograms are normedito the same area for comparison.
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Figure 2. Distributions of the number of charged tracks around a lepia cone oAR= 04 (top left), the
two lepton separation iAR (top right), the invariant mass of two leptons (bottom lefitid the transverse
mass of leptons combined witiET (bottom right). Among the histograms, black indicates Z\yhsil
events, red indicates, green indicates Z plus jets, blue indicafs!
of all backgrounds. All histograms are normalized to the samea for comparison.
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Figure 3. Distributions of the transverse momentum of leptons (tdf),l¢he transverse momentum of
the WZ system (top right), the missing transverse energhefavent (bottom left) and the vector sum of
transverse momenta from leptons aMdET (bottom right). Among the histograms, black indicates ZW
signal events, red indicatés green indicates Z plus jets, blue indica®& ! ““““ and pink indicates a
combination of all backgrounds. Signal and total reweidttackground events are normalized to the same
area for comparison. Major background are stacked indigdtie relative contributions.
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Figure 4. Distributions of the number of charged tracks around a lejriaa cone oAR= 04 (top left), the
two lepton separation iAR (top right), the invariant mass of two leptons (bottom lefitid the transverse
mass of leptons combined wWitHET (bottom right). Among the histograms, black indicates Z\ynsil
events, red indicatés, green indicates Z plus jets, blue indicaf&! “‘‘‘and pink indicates a combination
of all backgrounds. Signal and total reweighted backgroewehts are normalized to the same area for
comparison. Major background are stacked indicating tkegive contributions.
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Figure 5. Distributions of the ANN output for testing samples assugriittegrated luminosity of 1 fb'.
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Figure 6. Distributions of the BDT output for testing samples assignitiegrated luminosity of 1 fbt.
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process is repeated 50 times to obtain average backgrofici@mties and RMS for a set of fixed signal
efficiencies.
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