
A q-deformation of the Coulomb Problem

James Feigenbaum1 and Peter G. O. Freund2

Enrico Fermi Institute, Department of Physics
University of Chicago, Chicago, IL 60637

ABSTRACT
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Hamiltonian.
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1 Introduction

Much work has been done recently to explore the SOq(3)-symmetric quantum
mechanics developed in [1] and [2]. In particular, a lot is known about the q-
deformations of the harmonic oscillator. The other nontrivial soluble problem
in ordinary quantum mechanics is the Coulomb problem, but for that one needs
some notion of an inverse radius. Weich [3] considered a q-deformed Coulomb
potential, defining 1

R in a manner dependent upon a particular Hilbert space
representation. This differs from the more standard ”wave-function” type ap-
proaches used in investigations of the oscillator (Refs. [4] - [6] for example).

Here we approach this problem by defining 1
R as an actual element of the

algebra of observables, thereby achieving representation-independence. Since
X2 = R2 is already defined, we can then also define R as well as all its integral
powers. A study of the action of momentum operators on powers of R then helps
to bring out the interpretation of these operators as symmetric q-derivatives.

Using this definition of 1
R , a self-adjoint symmetric q-deformation of the

Coulomb Hamiltonian can be found which shares the n2-fold degeneracy of the
undeformed Hamiltonian for the q-analog of bound states. As in [3], we obtain
a Balmer-type spectrum for these states with

En = −

(
α

[n]q

)2

, (1)

where the symmetric q-analog of n is defined as

[n]q =
qn − q−n

q − q−1
. (2)

In addition, we also obtain positive-energy wave functions and a candidate q-
Coulomb S-matrix.

The paper is structured as follows. After a brief review of SOq(3)-symmetric
quantum mechanics (Section 2), we set up the formalism for dealing with the
q-Coulomb problem (Sections 3-5), which is then treated in Section 6. The
detailed proofs of some statements made in the text are deferred to five Appen-
dices.

2 SOq(3)-symmetric quantum mechanics

We build upon the algebra of observables as it is defined in Refs. [5] and [3].
The q-deformed metric and Levi-Cività tensors are defined as follows:

γij ≡ γij ≡

 0 0 1√
q

0 1 0
√
q 0 0



ε1
ij ≡ εij

1 ≡

 0 1√
q 0

−
√
q 0 0

0 0 0
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ε2
ij ≡ εij

2 ≡

 0 0 −1
0 1√

q
−
√
q 0

1 0 0



ε3
ij ≡ εij

3 ≡

 0 0 0
0 0 1√

q

0 −
√
q 0


These give rise to an R-matrix:

R̃ijkl = qδikδ
j
l − εa

ijεkl
a + (

1

q
− 1)γijγkl

which is a solution to the Yang-Baxter equation

R̃ijabR̃
bk
cnR̃

ac
lm = R̃jkdeR̃

id
lf R̃

fe
mn,

and has the inverse

R̃−1 ij
kl =

1

q
δikδ

j
l − εa

ijεkl
a + (q − 1)γijγkl.

We use the metric and Levi-Cività tensors to define scalar and vector prod-
ucts as for the undeformed tensors: A ·B = γijAiBj and [A×B]k = εk

ijAiBj .
AXR3

q
is the SOq(3)-covariant *-algebra defined by the generators X1, X2, X3

subject to the relations
[X ×X]k = 0

and
X∗i = γijXj .

X2 ≡ X ·X is then real and central in this algebra. In the q = 1 limit, X1 and
X3 correspond to 1√

2
(X ± Y ) while X2 is Z. The space of wave functions in

harmonic-oscillator treatments of SOq(3)-symmetric quantum mechanics is an
appropriate subspace of AXR3

q
.

One also considers an SOq(3)-covariant *-algebra DXR3
q
of operators on AXR3

q
,

whose generators are the Xi, derivative operators ∂i, and a scaling operator µ.
The Xi act on AXR3

q
by left multiplication. µ is defined such that µ(1) = 1; and

for all f ∈ AXR3
q
, µ(Xif) = qXiµ(f). ∂i is defined such that ∂i(1) = 0; and for

all f ∈ AXR3
q
,

∂i(Xif) = [γij +
1

q
R̃klijXk∂l]f.

The generators of DXR3
q

then obey the relations:

µXi = qXiµ,
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µ∂i =
1

q
∂iµ,

∂iXj = γij +
1

q
R̃klijXk∂l

[∂ × ∂]k = 0.

One also defines an inverse of µ:

µ−1 ≡ µ[1 + q−2(1− q2)X · ∂ + q−3(1− q)2X2∂
2
].

In addition, there is a conjugate set of derivative operators in DXR3
q
,

∂i ≡ µ
2[∂i + (q−2 − q−1)Xi∂

2
].

∂i then satisfy the relations
[∂ × ∂]k = 0

and
∂iXj = γij + qR̃−1 kl

ijXk∂l

The *-operation on µ and ∂i is defined as µ∗ ≡ q−3µ−1 and (∂i)
∗ ≡ −q3γij∂j.

Neither triplet of derivative operators has a subalgebra isomorphic to AXR3
q
,

but a linear combination of the two does. This linear combination is then the
triplet of q-momentum operators

Pi =
∂i + q−3∂i
i(1 + q−3)

.

Then (Pi)
∗ = γijPj, [P × P ]k = 0, and P 2 is a real scalar that commutes with

the Pi.
The Xi and Pj satisfy q-deformed versions of the Heisenberg relations:

i(PaXb − qR̃
−1 cd

abXcPd) = µ−1

(
γabW +

q − 1

qK
εab

mLm

)
and

−i(XaPb − qR̃
−1 cd

abPcXd) = q3µ

(
γabW +

q − 1

qK
εab

mLm

)
,

where W ≡ µ[1 + q−2(1− q)X · ∂] is a real scalar, Li ≡
1
qµ[X × ∂]i, and

K ≡ q − 1 +
1

q
. (3)
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The Li and W generate a q-deformed angular momentum algebra. Vectors Zi
(such as the Xi, ∂j, and Pk) satisfy the following relations with the  Li and W ,
generalizing the role of the Li as generators of rotations:

LiZj = −εi
cdεdj

eZcLe + εij
aZaW,

L · Z = Z · L = 0,

WZj = KZjW − (K − 1)εj
rsZrLs.

In addition Z2 commutes with the Li and W . The Li and W also satisfy the
following relations:

L2 =
W 2 − 1

K − 1

and
[L× L]k = LkW = WLk.

AXR3
q

modulo powers of X2 can be shown to be a direct sum, indexed by

nonnegative integers l, of irreducible representations of the angular momentum
algebra. The lth representation is then (2l+1)-dimensional, and W is a Casimir
operator with eigenvalue

wl =
ql+1 + q−l

q + 1
. (4)

For q = 1, the eigenvalue of L2 in the lth representation becomes the familiar
l(l + 1).

As a last preliminary result, the momentum operators can be expressed in
terms of W , µ, and X2:

X2Pi =
1

iK(q − 1
q
)(q − 1)

[
1

q
XiWµ−1 −WXiµ

−1 + q2XiWµ− qWXiµ], (5)

and

X2P 2 =
1

K2(q − 1
q
)2

[
(q + 1)2

q
W 2 − qµ2 − 2−

1

q
(µ−1)2]. (6)

These identities will be essential for calculations in the representation we will
introduce later. We have included the numerical K factors on the left hand
side of these identities, as we will define the hamiltonian scaled by a K2 factor,
which goes to one when q→ 1.

3 Definition of 1
R

1
R is already a well-defined concept in the space of undeformed, complex func-
tions on R3. Its essential properties are that it is a real, scalar function and
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that X2( 1
R )2 = ( 1

R )2X2 = 1. The simplest generalization of these properties is

then to define 1
R

to be a real, scalar corepresentation of SOq(3). ÂXR3
q

is then

the *-algebra generated by the Xi and 1
R , where the Xi obey the same relations

as in AXR3
q
, 1
R commutes with the Xi, and

X2(
1

R
)2 = 1. (7)

D̂XR3
q

is the SOq(3)-covariant *-algebra of operators on ÂXR3
q
, where we add

1
R to the generators of D̂XR3

q
. For this definition to be complete we must have a

set of relations involving 1
R , µ, and the derivatives. These must be consistent

with the relations between 1
R and the Xi. Clearly since 1

R has dimensions of an
inverse length, we should have

µ
1

R
= q−1 1

R
µ.

Equation 7 implies ∂i(
1
R

) may be.

∂iX
2(

1

R
)2 = ∂i(1) = 0

It follows from the algebra of DXR3
q

that

∂iX
2 = (q−1 + 1)Xi + q2X2∂i.

Thus

(q−1 + 1)Xi
1

R2
+ q2X2∂i(

1

R2
) = 0,

and therefore

∂i

(
1

R2

)
= −q−2(q−1 + 1)

1

R4
Xi (8)

Note that we are using the notation that if A ∈ D̂XR3
q
, and f ∈ ÂXR3

q
then

A(f) ∈ ÂXR3
q

is the result of evaluating the effect of A on f , whereas Af ∈ D̂XR3
q

is the product of A and f as operators.
The simplest solution for ∂i

1
R is

∂i
1

R
= q−1 1

R
∂i − q

−2 1

R3
Xi. (9)

Repeated application of Equation (9) indeed gives (8). Similarly one finds that

∂i
1

R
= q

1

R
∂i − q

2 1

R3
Xi. (10)

Equation (9) must be checked for consistency with the algebra of ÂXR3
q

before

we can conclude that D̂XR3
q

is a consistent operator algebra. In particular we must
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show that ∂i(
1
Rf) = ∂i(f

1
R ) and ∂i(X

2 1
R2 ) = ∂i(

1
R2X

2) = 0. In addition if 1
R

is truly a scalar, it should commute with the Li and W . The proofs that these
conditions are satisfied are given in Appendix A.

Having defined 1
R , we can now also define the q-deformed radius R ≡ 1

RX
2.

This has the following commutation relation with ∂i:

∂iR = ∂i
1

R
X2

=

[
q−1 1

R
∂k − q

−2 1

R3
Xk

]
X2

= q−1 1

R
[(q−1 + 1)Xi + q2X2∂i]− q

−2 1

R
Xi

= q−1 1

R
Xi + qR∂i

Induction over positive and negative n gives

∂iR
n = q−1(n)qR

n−2Xi + qnRn∂i

where

(n)q ≡
qn − 1

q − 1

is the asymmetric q-analog. One can in fact develop a theory using ∂ or ∂
as momentum operators and rewrite q-deformed harmonic oscillator theories in

the language of R and integral powers of R. However since ∂2 and ∂
2

are not
self-adjoint, we will concentrate on the action of the Pi on elements of ÂXR3

q
.

4 Separation of Variables

Using the formalism developed in the last section, we can now consider the q-
analog of the separation of variables problem for the kinetic term of the hamil-
tonian. To this end we first introduce q-analogs of spherical harmonics. These
are defined, up to a—for us irrelevant—normalization as elements Yq

l
m of ÂXR3

q

which obey the following two conditions:
(i) Left multiplication of Yq

l
m by L2 or by L2 yields Yq

l
m multipied by a real

eigenvalue, or in other words, Yq
l
m is an “eigenfunction” of both L2 and L2.

(ii) All Yq
l
m commute with µ.

For illustration, we give the explicit expressions of Yq
l
m for l = 0, 1, 2

Yq
0
0 = 1

Yq
1
−1 =

1

R
X1

Yq
1
0 =

1

R
X2
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Yq
1
1 =

1

R
X3

Yq
2
−2 =

1

R2
X2

1

Yq
2
−1 =

1

R2
X1X2

Yq
2
0 =

1

R2
[qX1X3 − (

√
q +

1
√
q

)X2X2 +
1

q
X3X1]

Yq
2
1 =

1

R2
X2X3

Yq
2
2 =

1

R2
X2

3

Now, by multiplying equations (5) and (6) on the left by 1
R and 1

R2 respec-
tively, we obtain

KPi =
1

i(q − 1
q )(q − 1)

1

R

[
1

q
XiWµ−1 −WXiµ

−1 + q2XiWµ− qWXiµ

]
,

(11)
and

K2P 2 =
1

(q − 1
q )2

1

R2

[
(q + 1)2

q
W 2 − qµ2 − 2−

1

q
(µ−1)2

]
. (12)

Since µ commutes with the Yq
l
m and W commutes with powers ofR, if we ex-

pand functions in terms of RnYq
l
m, Equation (12) is ready made for calculating

their momentum squared.

K2P 2RnYq
l
m =

1

(q − 1
q )2

1

R2

[
(q + 1)2

q
w2
l − q

2n+1 − 2− q−2n−1

]
RnYq

l
m

=
q2l+1 + q−2l−1 − q2n+1 − q−2n−1

(q − 1
q )2

Rn−2Yq
l
m.

In terms of the symmetric q-analog of n of equation (2), we can write this in
the simplified form

K2P 2RnYq
l
m = −[n+ l + 1]q[n− l]qR

n−2Yq
l
m. (13)

This is a clear generalization of the result from ordinary real calculus that

∇[rnYlm(θ, φ)] = (n+ l+ 1)(n− l)rn−2Ylm(θ, φ),

and it is the main result of this section.
Equation (11) is not nearly as useful as its counterpart because the action

of the Xi on Yq
l
m is nontrivial. However for powers of R, one can obtain the

simple result that

iKPi(R
n) = [n]qR

n−2Xi = [n]qR
n−1Xi

R
. (14)
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5 The free particle

Let us consider a system with Hamiltonian

H = K2P 2

with the convenient normalization factor K2 determined by equation (3). Then
the Schrödinger equation for this system is the q-deformed Helmholtz equation

K2P 2ψ = k2ψ.

The solutions to this are of the form j[q]l(kR)Yq
l
m and n[q]l(kR)Yq

l
m where j[q]l

and n[q]l are respectively the q-spherical Bessel and Neumann functions.

j[q]l(x) =
∞∑
n=0

(−1)n[2n+ 2l]q!!

[2n]q!![2n+ 2l + 1]q!
x2n+l (15)

n[q]l(x) = −
l−1∑
n=0

[2l− 2n]q!

[2n]q!![2l− 2n]q!!
x2n−l−1

+(−1)l+1
∞∑
n=l

(−1)n[2n− 2l]q!!

[2n]q!![2n− 2l]q!
x2n−l−1 (16)

where for nonnegative integers n

[n]q! ≡

{ ∏n
k=1[k]q n > 0

1 n = 0
(17)

and

[2n]q!! ≡

{ ∏n
k=1[2k]q n > 0

1 n = 0
(18)

That Equations (15) and (16) give rise to solutions is easily seen by applying
Equation (13). This eliminates the zeroth element, and then reindexing gives
the desired result as would be the case for the q = 1 differential equation.

We can also obtain a q-deformed generalization of the Rayleigh formulas,
which provide an alternative definition of these Bessel and Neumann functions.
This will be a more convenient form for obtaining q-spherical Hankel functions,

h
(1)
[q]l(x) ≡ j[q]l(x) + in[q]l(x) (19)

and
h

(1)
[q]2

(x) ≡ j[q]l(x)− in[q]l(x), (20)

corresponding to incoming and outgoing spherical waves. These results are
discussed in Appendix B.

It is interesting to note that, because the Pi do not commute, it is not
possible to have a plane wave with definite momentum as in ordinary quantum
mechanics. The best we could do is specify the component of the momentum in
the direction of propagation. Since, moreover, P2 for example does not commute
with L2, the problem of expanding even these quasiplane waves as a sum of
RnYq

l
m terms is nontrivial.
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6 The q-Coulomb Problem

In ordinary quantum mechanics, the Coulomb Hamiltonian is

H =
p2

2m
−
α

r
;

or if we rescale this by 2m and incorporate the mass into α,

H = p2 −
2α

r
.

There are several possible ways to q-deform this. We are interested in a self-
adjoint Hamiltonian which preserves the properties of the ordinary Hamiltonian
that make it amenable to finding eigenfunctions. That is to say we require the
existence of a q-deformed Lenz vector which commutes with the q-deformed
Hamiltonian so that there continue to be degeneracies between solutions with
different angular momentum quantum numbers.

Following [3], we define our q-deformed Coulomb Hamiltonian to be:

H = K2P 2 − αq(
1

R
µ+ µ∗

1

R
)

which is clearly self-adjoint (for convenience the normalization of the kinetic
term has again been chosen with a prefactor K2 determined by equation (3)).
Noting that µ∗ = q−3µ−1, this can be written in the simpler form

H = K2P 2 − α
1

R
(qµ+ q−1µ−1). (21)

This Hamiltonian also commutes with the Lenz vector

Ak ≡
[W, iKPk]

K − 1
+
αXk

R

= iK(PkW − (P × L)k) +
αXk

R
.

The Lenz vector along with the angular momentum operators then generate the
algebra given in [3].

If we write the eigenvalues E of the Hamiltonian (21) in the form

E = −

(
α

[γ]q

)2

, (22)

then the corresponding “eigenfunctions” are (see Appendix C for their deriva-
tion)

ψγlm =
∞∑
p=0

Ap(γ)Rl
(
αqγR

[γ]q

)p
expq

(
−ql+1+p−γαR

[γ]q

)
Yq

l
m (23)

with

Ap(γ) = qpl+
1
2p(p+1) (1− q2)p

(q2; q2)p

(q2(l+1−γ); q2)p
(q2(2l+2); q2)p

(q4(l+1); q4)p
(q2(l+1); q2)p

. (24)
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Here

(a; u)p ≡

{ ∏p−1
m=0(1− aum) p = 1, 2, 3...

1 p = 0
, (25)

is the q-deformed Pochhammer symbol [7], with u = q2 and q4 in Eq. (24), and

expq(x) =
∞∑
n=0

xn

[n]q!
(26)

is the q-deformed exponential, where we have used the notation of Eq. (17). qγ

is obtained in terms of the energy E from the quadratic equation (22). This has
two solutions

q−γ± =
η ±

√
η2 − E

√
−E

, (27)

with η given by

η =
(q−1 − q)α

2
. (28)

(We assume q < 1 to insure convergence; had we instead set q > 1, we would
have to everywhere change q→ q−1)

Note that for a given energy, we actually only have one solution since if we
write the solutions as power series of R, the difference equation admits only one
solution that behaves as Rl for small R. Whether we write it in terms of γ+ or
γ− simply gives us two expressions for the same result.

In ordinary quantum mechanics, a decaying exponential multiplied by a
polynomial in r is normalizable and gives rise to a bound state. Something very
similar happens in the q 6= 1 limit. Consider the wave function (23), which
is a sum of terms each of which is a nonnegative power of R multiplying a q-
exponential of the form expq(−cq(p)R). As can be seen from (23), the cq(p)
become independent of p as q → 1, thus reproducing the usual result. Then we
define a bound state in the q-deformed case to be a wave function of the type
(23) for which the sum over p truncates at the finite value p = n − l − 1. On
account of the factor (q2(l+1−γ); q2)p in the numerator of (24), such a truncation
occurs if γ equals a positive integer n > l. From Eq. (22), we then obtain the
q-Balmer formula, and we find the corresponding wave functions given by (23)
and (24). The q-Balmer formula already appears in Ref. [3], where, as noted in
the introduction, the operator 1

R
is treated differently. This difference is reflected

in our wave functions.
In principle these same wave functions (23) should also cover the continuum

part of the spectrum, and one should be able to extract an S-matrix from them.
How to do this in a rigorous fashion remains to be seen. Here we consider the
candidate S-matrix suggested by equation (24)

S
(q)
l (E) = (1 − q2)(γ−−γ+) Γq2(l + 1− γ+)

Γq2(l + 1− γ−)
=
∞∏
n=0

1− q2(l+1−γ−+n)

1− q2(l+1−γ++n)
, (29)
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where the q-gamma function is defined as in [7]:

Γq2(x) :=
(q2; q2)∞
(q2x; q2)∞

(1 − q2)1−x. (30)

The S-matrix (29) appears to have all the right features:
A. For q → 1 this S-matrix reproduces the familiar Coulomb S-matrix. In

this limit the prefactor goes to one , as can be seen from Eq. (27), and the q-
gamma functions become precisely the ordinary gamma functions which appear
in the ordinary Coulomb S-matrix.

B. For integer γ+ ≥ l + 1, S
(q)
l (E) has a pole corresponding to a q-Balmer

state. Both the the location and the residue of this pole differ from those of its
ordinary (q = 1) Balmer limit.

C. As can be seen from Eqs. (29) and (27) the branchpoint of S
(q)
l (E), the

scattering threshold, is now located E = η2, with η given in Eq. (28) and not
at E = 0 as in the ordinary case. This is the most dramatic departure from the
ordinary case: the scattering region starts at E = η2. For q = 1 this reduces to
the expected threshold E = 0.

A Properties of 1
R

We have already satisfied ∂i(X
2 1
R2 ) = 0. This definition of ∂i

1
R

also satisfies
the other half of the second constraint.

∂i
1

R2
= q−2 1

R2
∂i − q

−2(q−1 + 1)
1

R4
Xi

∂i

(
1

R2
X2

)
=

[
q−2 1

R2
∂i + q2X2∂i

]
(1) − q−2(q−1 + 1)

1

R2
Xi

= 0

Trivially ∂i1
1
R = ∂i

1
R1 = ∂i

1
R . Suppose that ∂if

1
R = ∂i

1
Rf where f ∈ ÂXR3

q
.

∂iXjf
1

R
= [γij + qR̃−1 kl

ijXk∂l]f
1

R

= γijf
1

R
+ qR̃−1 kl

ijXk∂l
1

R
f

= γijf
1

R
+ qR̃−1 kl

ijXk

(
q−1 1

R
∂l − q

−2 1

R3
Xl

)
f

= γijf
1

R

−q−2δki δ
l
j

1

R3
XkXlf + q−1εa

klεi
jaXkXlf

1

R3

−q−1(q − 1)γklγij
1

R3
XkXlf

= q−1γijf
1

R
+

1

R
R̃−1 kl

ijXk∂lf
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where we used the fact that εa
klXkXl = 0. At the same time

∂i
1

R
Xjf =

(
q−1 1

R
∂i − q

−2 1

R3
Xi

)
Xjf

= q−1 1

R
[γij + qR̃−1 kl

ijXk∂l]f − q
−2 1

R3
XiXjf

= ∂iXjf
1

R

We must also show that ∂i
1
Rf

1
R = ∂if

1
R

1
R in order to complete this inductive

proof. However this is trivial having assumed that ∂if
1
R = ∂i

1
Rf . Thus ÂXR3

q

and D̂XR3
q

are consistently defined.

If 1
R is truly a scalar, it should commute with the Li and W . This is indeed

true:

W = µ[1 + q−2(1 − q)X · ∂]

X · ∂ = γijXi∂j
1

R

= γijXi

[
q

1

R
∂j − q

2 1

R3
Xj

]
= q

1

R
X · ∂ − q2 1

R

W
1

R
= µ

[
1

R
+ (q−2 − q−1)

(
q

1

R
X · ∂ − q2 1

R

)]
= µ

[
q

1

R
+ q

1

R
(q−2 − q−1)X · ∂

]
=

1

R
µ[1 + (q−2 − q−1)X · ∂]

=
1

R
W

Li = µq−1[X × ∂]i

[X × ∂]i = εi
jkXj∂k

= εi
jkXj

[
q

1

R
∂k − q

2 1

R3
Xk

]
= q

1

R
εi
jkXj∂k

= q
1

R
[X × ∂]i

Li
1

R
= µq−1[X × ∂]i

1

R

= µq
1

R
q−1[X × ∂]i

13



=
1

R
µq−1[X × ∂]i

=
1

R
Li

B q-deformed Rayleigh formulas

Let D be the symmetric q-derivative:

Df(x) ≡
f(qx) − f(q−1x)

(q − q−1)x
(31)

Acting on monomials,
Dxn = [n]qx

n−1 (32)

Let us define the following q-generalizations of some common functions by
replacing factorials with q-deformed factorials in their Taylor expansions:

expq(x) ≡
∞∑
n=0

xn

[n]q!
(33)

cosq(x) ≡
∞∑
n=0

(−1)nx2n

[2n]q!
(34)

sinq(x) ≡
∞∑
n=0

(−1)nx2n+1

[2n+ 1]q!
. (35)

Then expq(ix) = cosq(x) + i sinq(x)
The q-deformed Rayleigh formulas,

j[q]l(x) = (−x)l
(

1

x
D

)l (
sinq(x)

x

)
(36)

n[q]l(x) = (−x)l
(

1

x
D

)l (
− cosq(x)

x

)
, (37)

can then be proved by induction after noting that

j[q]0(x) =
sinq(x)

x
(38)

and

n[q]0x = −
cosq(x)

x
. (39)

The q-deformed spherical Hankel functions are

h
(1)
[q]l(x) ≡ j[q]l(x) + in[q]l(x) (40)

14



and h
(2)
[q]l

(x) is just the complex conjugate of h
(1)
[q]l

(x). Since (−x)l( 1
x
D)l is a

linear operator, it follows that h
(1)
[q]l should satisfy

h
(1)
[q]l(x) = (−x)l

(
1

x
D

)l(−i expq(ix)

x

)
.

One can show by induction that

h
(1)
[q]l(x) =

l∑
n=0

q
1
2 [l(l+1)−n(n+1)] i

n−l−1[l+ n]q!

[2n]q!![l− n]q!

expq(iq
nx)

xn+1
(41)

satisfies this Rayleigh formula for all l. Thus these functions must equal the
Hankel functions.

The powers of q that appear both inside and outside the q-exponential arise
because

D(xk expq(αx)) = [k]qx
k−1 expq(αqx) + αq−kxk expq(αx)

= [−k]qx
k−1 expq(α

1

q
x) + αqkxk expq(αx).

This results from the q-deformed arithmetic in which

[n+ k]q = qn[k]q + q−k[n]q = q−n[k]q + qk[n]q (42)

It appears to be a common trend of solutions to self-adjoint q-deformed Hamil-
tonians that they can be expressed as series of the form

∑
n An expq(q

nx).

C q-Coulomb Hamiltonian Eigenvalue Problem

Let β =
√
−E and [γ]q = α

β . In order to obtain a difference equation for the Ap,

we need to express (H + β2)ψ as a series of the form
∑
pBp expq(q

px) where
Bp is a function of the Ap.

If we simply apply (H + β2) to ψ using Equation 13, we get

(H + β2)R l+p expq(−q
sβR)Yq

l
m =

−
∞∑
n=0

[n+ p+ 2l+ 1]q[n+ p]q
[n]q!

(−qsβ)nRn+p+l−2Yq
l
m

−α
∞∑
n=0

(qn+l+p−1 + q−n−l−p−1)

[n]q!
(−qsβ)nRn+p+l−1Yq

l
m

+β2R l+p expq(−q
sβR)Yq

l
m.

If we decompose [n+ p+ 2l+ 1]q[n+ p]q, we get terms proportional to
[n]q[n − 1]q, q

−n[n]q, and q−2n. By resumming these terms, we can rewrite

15



them as powers of R times exponentials. We wish to rewrite the entire equation
in terms of functions of the form R l+p−m expq(−q

s+mβR)Yq
l
m where m is an

integer and s is a function of p. Then we can obtain a difference equation for the
coefficients of these functions. In the following, we assume that s = −l−1−p+γ.
The only terms which need to be rewritten are then

(K2P 2 − α
1

R
q−1µ−1)R l+p expq(−q

−l−1−p+γβR)Yq
l
m =

−
∞∑
n=0

[n+ 2l+ p+ 1]q[n+ p]q
[n]q!

(ql+1+p−γβ)nRn+l+p−2Yq
l
m

−[γ]qβ
∞∑
n=0

qn+l+p+1

[n]q!
(−ql+1+p−γβ)nRn+l+p−1Yq

l
m

= −
∞∑
n=0

(
[n+ 2l+ p+ 1]q[n+ p]q − q

−1+n+γ [n]q[γ]q
)

×
(−ql+1+p−γβ)n

[n]q!
Rn+l+p−2Yq

l
m

= −
∞∑
n=0

{
(q2p+2l+2 + 1− q2γ)[n]q[n− 1]q + q−2n[p+ 2l + 1]q[p]q

+ q−n[n]q
(
−q1+γ [γ]qq

p+2l+1[p]q + q1+p[2l+ 2 + p]q
)

+ q−2n[p+ 2l+ 1]q[p]q
}

×
(−ql+1+p−γβ)n

[n]q!
Rn+l+p−2Yq

l
m

= β2
(
q2l+2+2p − q2l+2+2p−2γ − q4l+4p+4−2γ

)
R l+p expq(−q

−l−1−p+γβR)Yq
l
m

−β
(
ql+p+1[γ]q − q

2p+3l+1−γ [p]q − q
l+2p+1−γ [2l+ p + 2]q

)
×R l+p−1 expq(−q

−l−p+γβR)Yq
l
m

−[p+ 2l+ 1]q[p]qR
l+p−2 expq(−q

−l−p+1+γβR)Yq
l
m

Thus
(H + β2)R l+p expq(−q

−l−p−1+γβR)Yq
l
m

= q2l+2p+2−γ [2]q−l−p−1 [l+ p+ 1− γ]q(q
−1 − q)

×β2R l+p expq(−q
−l−1−p+γβR)Yq

l
m

+
(
q2p+3l+1−γ [p]q + ql+2p+1−γ [2l+ p+ 2]q − [2]ql+p+1 [γ]q

)
×βR l+p−1 expq(−q

−l−p+γβR)Yq
l
m

−[p+ 2l+ 1]q[p]qR
l+p−2 expq(−q

−l−p+1+γβR)Yq
l
m
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If we sum over p from 0 to ∞, we can obtain the desired difference equation.
We normalize the wave functions so that A0 = 1. Then

A1 = ql+1β
[2]ql+1 [l+ 1− γ]q

[2l+ 2]q

and for p > 0,
{[p+ 2l+ 3]q[p+ 2]q}Ap+2

= q2l+2p+2−γ [2]ql+p+1 [l+ p+ 1− γ]q(q
−1 − q)β2Ap

+
(
q2p+3l+3−γ [p+ 1]q + ql+2p+3−γ [2l+ p+ 3]q − [2]q−l−p−2 [γ]q

)
βAp+1

Equation 24 is then a solution to this difference equation. Thus the theorem is
proved.
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