571 research outputs found

    Self-modulation of nonlinear Alfven waves in a strongly magnetized relativistic electron-positron plasma

    Get PDF
    We study the self-modulation of a circularly polarized Alfven wave in a strongly magnetized relativistic electron-positron plasma with finite temperature. This nonlinear wave corresponds to an exact solution of the equations, with a dispersion relation that has two branches. For a large magnetic field, the Alfven branch has two different zones, which we call the normal dispersion zone (where d omega/dk > 0) and the anomalous dispersion zone (where d omega/dk < 0). A nonlinear Schrodinger equation is derived in the normal dispersion zone of the Alfven wave, where the wave envelope can evolve as a periodic wave train or as a solitary wave, depending on the initial condition. The maximum growth rate of the modulational instability decreases as the temperature is increased. We also study the Alfven wave propagation in the anomalous dispersion zone, where a nonlinear wave equation is obtained. However, in this zone the wave envelope can evolve only as a periodic wave train.CONICyT 21100839 74110049FONDECyT 1110135 1110729 1080658 1121144CNPqEuropean Commission for a Marie Curie International Incoming FellowshipInstitute for Fusion Studie

    Exponential improvement in photon storage fidelities using subradiance and "selective radiance" in atomic arrays

    Get PDF
    A central goal within quantum optics is to realize efficient interactions between photons and atoms. A fundamental limit in nearly all applications based on such systems arises from spontaneous emission, in which photons are absorbed by atoms and then re-scattered into undesired channels. In typical treatments of atomic ensembles, it is assumed that this re-scattering occurs independently, and at a rate given by a single isolated atom, which in turn gives rise to standard limits of fidelity in applications such as quantum memories or quantum gates. However, this assumption can be violated. In particular, spontaneous emission of a collective atomic excitation can be significantly suppressed through strong interference in emission. Thus far the physics underlying the phenomenon of subradiance and techniques to exploit it have not been well-understood. In this work, we provide a comprehensive treatment of this problem. First, we show that in ordered atomic arrays in free space, subradiant states acquire an interpretation in terms of optical modes that are guided by the array, which only emit due to scattering from the ends of the finite chain. We also elucidate the properties of subradiant states in the many-excitation limit. Finally, we introduce the new concept of selective radiance. Whereas subradiant states experience a reduced coupling to all optical modes, selectively radiant states are tailored to simultaneously radiate efficiently into a desired channel while scattering into undesired channels is suppressed, thus enabling an enhanced atom-light interface. We show that these states naturally appear in chains of atoms coupled to nanophotonic structures, and we analyze the performance of photon storage exploiting such states. We find that selectively radiant states allow for a photon storage error that scales exponentially better with number of atoms than previously known bounds.Comment: Fixed minor typos, is now analogous to published versio

    Optimization of photon storage fidelity in ordered atomic arrays

    Get PDF
    A major application for atomic ensembles consists of a quantum memory for light, in which an optical state can be reversibly converted to a collective atomic excitation on demand. There exists a well-known fundamental bound on the storage error, when the ensemble is describable by a continuous medium governed by the Maxwell-Bloch equations. The validity of this model can break down, however, in systems such as dense, ordered atomic arrays, where strong interference in emission can give rise to phenomena such as subradiance and "selective" radiance. Here, we develop a general formalism that finds the maximum storage efficiency for a collection of atoms with discrete, known positions, and a given spatial mode in which an optical field is sent. As an example, we apply this technique to study a finite two-dimensional square array of atoms. We show that such a system enables a storage error that scales with atom number NaN_\mathrm{a} like (logNa)2/Na2\sim (\log N_\mathrm{a})^2/N_\mathrm{a}^2, and that, remarkably, an array of just 4×44 \times 4 atoms in principle allows for an efficiency comparable to a disordered ensemble with optical depth of around 600.Comment: paper is now identical to published versio

    Self-modulation of nonlinear waves in a weakly magnetized relativistic electron-positron plasma with temperature

    Get PDF
    We develop a nonlinear theory for self-modulation of a circularly polarized electromagnetic wave in a relativistic hot weakly magnetized electron-positron plasma. The case of parallel propagation along an ambient magnetic field is considered. A nonlinear Schrodinger equation is derived for the complex wave amplitude of a self-modulated wave packet. We show that the maximum growth rate of the modulational instability decreases as the temperature of the pair plasma increases. Depending on the initial conditions, the unstable wave envelope can evolve nonlinearly to either periodic wave trains or solitary waves. This theory has application to high-energy astrophysics and high-power laser physics.CONICyTFONDECyT 1110135 1080658Brazilian agency CNPqBrazilian agency FAPESPMarie Curie International Incoming Fellowshiphospitality of Paris ObservatoryInstitute for Fusion Studie

    Uptake and Conversion of Radioactive Carbon Dioxide and Glucose in the Acerola and their Relationship to Ascorbic Acid Biosynthesis

    Get PDF
    A study of the fate of radiocarbon-labeled glucose and carbon dioxide in the acerola (West Indian Cherry) has shown that these substances follow patterns of conversion comparable to those observed in other plants. These substances were not preferentially incorporated into ascorbic acid by acerola fruit. Sucrose, several amino acids, and malic acid appear to compete successfully with ascorbic acid for the label from these precursors

    Effect of Antimony and Cerium on the Formation of Chunky Graphite during Solidification of Heavy-Section Castings of Near-Eutectic Spheroidal Graphite Irons

    Get PDF
    Thermal analysis is applied to the study of the formation of chunky graphite (CHG) in heavysection castings of spheroidal graphite cast irons. To that aim, near-eutectic melts prepared in one single cast house were poured into molds containing up to four large cubic blocks 30 cm in size. Four melts have been prepared and cast that had a cerium content varying in relation with the spheroidizing alloy used. Postinoculation or addition of antimony was achieved by fixing appropriate amounts of materials in the gating system of each block. Cooling curves recorded in the center of the blocks show that solidification proceeds in three steps: a short primary deposition of graphite followed by an initial and then a bulk eutectic reaction. Formation of CHG could be unambiguously associated with increased recalescence during the bulk eutectic reaction. While antimony strongly decreases the amount of CHG, it appears that the ratio of the contents in antimony and cerium should be higher than 0.8 in order to avoid this graphite degeneracy

    Evidence of Skyrmion-Tube Mediated Magnetization Reversal in Modulated Nanowires

    Get PDF
    Magnetic nanowires, conceived as individual building blocks for spintronic devices, constitute a well-suited model to design and study magnetization reversal processes, or to tackle fundamental questions, such as the presence of topologically protected magnetization textures under particular conditions. Recently, a skyrmion-tube mediated magnetization reversal process was theoretically reported in diameter modulated cylindrical nanowires. In these nanowires, a vortex nucleates at the end of the segments with larger diameter and propagates, resulting in a first switching of the nanowire core magnetization at small fields. In this work, we show experimental evidence of the so-called Bloch skyrmion-tubes, using advanced Magnetic Force Microscopy modes to image the magnetization reversal process of FeCoCu diameter modulated nanowires. By monitoring the magnetic state of the nanowire during applied field sweeping, a detected drop of magnetic signal at a given critical field unveils the presence of a skyrmion-tube, due to mutually compensating stray field components. That evidences the presence of a skyrmion-tube as an intermediate stage during the magnetization reversal, whose presence is related to the geometrical dimensions of the cylindrical segments
    corecore