1,036 research outputs found

    Conformal anomaly from gauge fields without gauge fixing

    Get PDF
    We show how the Weyl anomaly generated by gauge fields, can be computed from manifestly gauge invariant and diffeomorphism invariant exact renormalization group equations, without having to fix the gauge at any stage. Regularisation is provided by covariant higher derivatives and by embedding the Maxwell field into a spontaneously broken U(11)U(1|1) supergauge theory. We first provide a realisation that leaves behind two versions of the original U(1)U(1) gauge field, and then construct a manifestly U(11)U(1|1) supergauge invariant flow equation which leaves behind only the original Maxwell field in the spontaneously broken regime.Comment: 24 page

    Investigation of advanced counterrotation blade configuration concepts for high speed turboprop systems. Task 5: Unsteady counterrotation ducted propfan analysis. Computer program user's manual

    Get PDF
    The primary objective of this study was the development of a time-marching three-dimensional Euler/Navier-Stokes aerodynamic analysis to predict steady and unsteady compressible transonic flows about ducted and unducted propfan propulsion systems employing multiple blade rows. The computer codes resulting from this study are referred to as ADPAC-AOACR (Advanced Ducted Propfan Analysis Codes-Angle of Attack Coupled Row). This report is intended to serve as a computer program user's manual for the ADPAC-AOACR codes developed under Task 5 of NASA Contract NAS3-25270, Unsteady Counterrotating Ducted Propfan Analysis. The ADPAC-AOACR program is based on a flexible multiple blocked grid discretization scheme permitting coupled 2-D/3-D mesh block solutions with application to a wide variety of geometries. For convenience, several standard mesh block structures are described for turbomachinery applications. Aerodynamic calculations are based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. Steady flow predictions are accelerated by a multigrid procedure. Numerical calculations are compared with experimental data for several test cases to demonstrate the utility of this approach for predicting the aerodynamics of modern turbomachinery configurations employing multiple blade rows

    A perturbative re-analysis of N=4 supersymmetric Yang--Mills theory

    Full text link
    The finiteness properties of the N=4 supersymmetric Yang-Mills theory are reanalyzed both in the component formulation and using N=1 superfields, in order to discuss some subtleties that emerge in the computation of gauge dependent quantities. The one-loop corrections to various Green functions of elementary fields are calculated. In the component formulation it is shown that the choice of the Wess-Zumino gauge, that is standard in supersymmetric gauge theories, introduces ultraviolet divergences in the propagators at the one-loop level. Such divergences are exactly cancelled when the contributions of the fields that are put to zero in the Wess-Zumino gauge are taken into account. In the description in terms of N=1 superfields infrared divergences are found for every choice of gauge different from the supersymmetric generalization of the Fermi-Feynman gauge. Two-, three- and four-point functions of N=1 superfields are computed and some general features of the infrared problem are discussed. We also examine the effect of the introduction of mass terms for the (anti) chiral superfields in the theory, which break supersymmetry from N=4 to N=1. It is shown that in the mass deformed model no ultraviolet divergences appear in two-point functions. It argued that this result can be generalized to n-point functions, supporting the proposal of a possible of use of this modified model as a supersymmetry-preserving regularization scheme for N=1 theories.Comment: 41 pages, LaTeX2e, uses feynMP package to draw Feynman diagram

    The superfield quantisation of a superparticle action with an extended line element

    Get PDF
    A massive superparticle action based on the generalised line element in N = 1 global superspace is quantised canonically. A previous method of quantising this action, based on a Fock space analysis, showed that states existed in three supersymmetric multiplets, each of a different mass. The quantisation procedure presented uses the single first class constraint as an operator condition on a general N = 1 superwavefunction. The constraint produces coupled equations of motion for the component wavefunctions. Transformations of the component wavefunctions are derived that decouple the equations of motion and partition the resulting wavefunctions into three separate supermultiplets. Unlike previous quantisations of superparticle actions in N = 1 global superspace, the spinor wavefunctions satisfy the Dirac equation and the vector wavefunctions satisfy the Proca equation. The off-shell closure of the commutators of the supersymmetry transformations, that include mass parameters, are derived by the introduction of auxiliary wavefunctions. To avoid the ghosts arising in a previous Fock space quantisation an alternative conjugation is used in the definition of the current, based on a Krein space approach

    Global Occurrence and Chemical Impact of Stratospheric Blue Jets Modeled With WACCM4

    Get PDF
    In this work we present the first parameterizations of the global occurrence rate and chemical influence of Blue Jets, a type of transient luminous event taking place in the stratospheric region above thunderclouds. These parameterizations are directly coupled with five different lightning parameterizations implemented in the Whole Atmosphere Community Climate Model (WACCM4). We have obtained a maximum Blue Jet global occurrence rate of about 0.9 BJ per minute. The geographical occurrence of Blue Jets is closely related to the chosen lightning parameterization. Some previously developed local chemical models of Blue Jets predicted an important influence onto the stratospheric concentration of N2O, NOx, and O3. We have used these results together with our global implementations of Blue Jets in WACCM4 to estimate their global chemical influence in the atmosphere. According to our results, Blue Jets can inject about 3.8 Tg N2O-N/year and 0.07 Tg NO-N/year near the stratosphere, where N2O-N and NO-N stand for the mass of nitrogen atoms in N2O and NO molecules, respectively. These production rates of N2O and NOx could have a direct impact on, for example, the acidity of rainwater or the greenhouse effect. We have found that Blue Jets could also slightly contribute to the depletion of stratospheric ozone. In particular, we have estimated that the maximum difference in the concentration of O3 at 30 km of altitude between simulations with and without Blue Jets can be about −5% in equatorial and polar regions. ©2019. American Geophysical Union. All Rights Reserved.This work was supported by the Spanish Ministry of Science and Innovation, MINECO under projects and ESP2017-86263-C4-4-R and by the EU through the H2020 Science and Innovation with Thunderstorms (SAINT) project (Ref. 722337) and the FEDER program. Authors F.J.P.I and F.J.G.V acknowledge financial support from the State Agency for Research of the Spanish MCIU through the >Center of Excellence Severo Ochoa> award for the Instituto de Astrofisica de Andalucia(SEV-2017-0709). The National Center for Atmospheric Research is sponsored by the National Science Foundation. The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the U.S. Department of Energy. Computing resources were provided by the Climate Simulation Laboratory at NCAR's Computational and Information Systems Laboratory (CISL), sponsored by the National Science Foundation and other agencies. F. J. P.-I. acknowledges a PhD research contract, code BES-2014-069567. F. J. G.-V. acknowledges support from the Spanish Ministry of Education and Culture under the Salvador de Madariaga program PRX17/00078.Peer Reviewe

    N=1* model and glueball superpotential from Renormalization-Group-improved perturbation theory

    Full text link
    A method for computing the low-energy non-perturbative properties of SUSY GFT, starting from the microscopic lagrangian model, is presented. The method relies on covariant SUSY Feynman graph techniques, adapted to low energy, and Renormalization-Group-improved perturbation theory. We apply the method to calculate the glueball superpotential in N=1 SU(2) SYM and obtain a potential of the Veneziano-Yankielowicz type.Comment: 19 pages, no figures; added references; note added at the end of the paper; version to appear in JHE

    Flow Equation for Supersymmetric Quantum Mechanics

    Full text link
    We study supersymmetric quantum mechanics with the functional RG formulated in terms of an exact and manifestly off-shell supersymmetric flow equation for the effective action. We solve the flow equation nonperturbatively in a systematic super-covariant derivative expansion and concentrate on systems with unbroken supersymmetry. Already at next-to-leading order, the energy of the first excited state for convex potentials is accurately determined within a 1% error for a wide range of couplings including deeply nonperturbative regimes.Comment: 24 pages, 8 figures, references added, typos correcte

    Robot-Assisted Laparoscopic Ureterolysis: Case Report and Literature Review of the Minimally Invasive Surgical Approach

    Get PDF
    Results of this study suggest that robotic-assisted laparoscopic ureterolysis is a safe and effective procedure for patients with idiopathic retroperitoneal fibrosis
    corecore