2,130 research outputs found

    Nonresonant searches for axion-like particles in vector boson scattering processes at the LHC

    Get PDF
    We propose a new search for Axion-Like Particles (ALPs), targeting Vector Boson Scattering (VBS) processes at the LHC. We consider nonresonant ALP-mediated VBS, where the ALP participates as an off-shell mediator. This process occurs whenever the ALP is too light to be produced resonantly, and it takes advantage of the derivative nature of ALP interactions with the electroweak Standard Model bosons. We study the production of ZZ, Zγ, W ±γ, W ±Z and W ±W ± pairs with large diboson invariant masses in association with two jets. Working in a gauge-invariant framework, upper limits on ALP couplings to electroweak bosons are obtained from a reinterpretation of Run 2 public CMS VBS analyses. The constraints inferred on ALP couplings to ZZ, Zγ and W ±W ± pairs are very competitive for ALP masses up to 100 GeV. They have the advantage of being independent of the ALP coupling to gluons and of the ALP decay width. Simple projections for LHC Run 3 and HL-LHC are also calculated, demonstrating the power of future dedicated analyses at ATLAS and CMS

    PDB44 THE COST-EFFECTIVENESS OF SAXAGLIPTIN VERSUS SULFONYLUREA (SU) IN THE TREATMENT OF TYPE 2 DIABETES MELLITUS (T2DM) IN GERMANY

    Get PDF

    Vector form factor of the pion : A model-independent approach

    Get PDF
    We study a model-independent parameterization of the vector pion form factor that arises from the constraints of analyticity and unitarity. Our description should be suitable up to s^(1/2) ~ 1.2 GeV and allows a model-independent determination of the mass of the rho(770) resonance. We analyse the experimental data on tau^- -> pion^- pion^0 nu_tau and e^+ e^- -> pion^+ pion^- in this framework, and its consequences on the low-energy observables worked out by chiral perturbation theory. An evaluation of the two pion contribution to the anomalous magnetic moment of the muon, a_{mu}, and to the fine structure constant, alpha(M_Z^2), is also performed.Comment: 5 pages, 2 figures. To appear in the proceedings of the High-Energy Physics International Conference on Quantum Chromodynamics QCD02, Montpellier (France), 2-9 July (2002

    New results on the hadronic vacuum polarization to the muon g-2

    Full text link
    Results on the lowest-order hadronic vacuum polarization contribution to the muon magnetic anomaly are presented. They are based on the latest published experimental data used as input to the dispersion integral. Thus recent results on tau to nutau pi pi0 decays from Belle and on e+ e- annihilation to pi+ pi- from BABAR and KLOE are included. The new data, together with improved isospin-breaking corrections for tau decays, result into a much better consistency among the different results. A discrepancy between the Standard Model prediction and the direct g-2 measurement is found at the level of 3 sigma.Comment: proceedings of the PhiPsi09 conference, Oct. 13-16, 2009, Beijing, Chin

    Contribution to muon g-2 from the \pi0\gamma and \eta\gamma intermediate states in the vacuum polarization

    Full text link
    Using new experimental data, we have calculated the contribution to the anomalous magnetic moment of the muon from the \pi0\gamma and \eta\gamma intermediate states in the vacuum polarization with high precision: a{\mu}(\pi0\gamma)+a{\mu}(\eta\gamma)=(54.7\pm 1.5)\times 10^{-11}. We have also found the small contribution from e+e-\pi0, e+e-\eta and \mu+\mu-\pi0 intermediate states equal to 0.5\times 10^{-11}.Comment: 6 pages, 2 figures, revte

    On the precision of the theoretical predictions for pi pi scattering

    Full text link
    In a recent paper, Pelaez and Yndurain evaluate some of the low energy observables of pi pi scattering and obtain flat disagreement with our earlier results. The authors work with unsubtracted dispersion relations, so that their results are very sensitive to the poorly known high energy behaviour of the scattering amplitude. They claim that the asymptotic representation we used is incorrect and propose an alternative one. We repeat their calculations on the basis of the standard, subtracted fixed-t dispersion relations, using their asymptotics. The outcome fully confirms our earlier findings. Moreover, we show that the Regge parametrization proposed by these authors for the region above 1.4 GeV violates crossing symmetry: Their ansatz is not consistent with the behaviour observed at low energies.Comment: Added more material, mostly in Sects. 7, 8 and 9, in support of the same conclusions. Latex, 28 pages, 3 figure

    Neutralino Dark Matter in Mirage Mediation

    Get PDF
    We study the phenomenology of neutralino dark matter (DM) in mirage mediation scenario of supersymmetry breaking which results from the moduli stabilization in some string/brane models. Depending upon the model parameters, especially the anomaly to modulus mediation ratio determined by the moduli stabilization mechanism, the nature of the lightest supersymmetric particle (LSP) changes from Bino-like neutralino to Higgsino-like one via Bino-Higgsino mixing region. For the Bino-like LSP, the standard thermal production mechanism can give a right amount of relic DM density through the stop/stau-neutralino coannihilation or the pseudo-scalar Higgs resonance process. We also examine the prospect of direct and indirect DM detection in various parameter regions of mirage mediation. Neutralino DM in galactic halo might be detected by near future direct detection experiments in the case of Bino-Higgsino mixed LSP. The gamma ray flux from Galactic Center might be detectable also if the DM density profile takes a cuspy shape.Comment: One reference adde

    Constraining Supersymmetry

    Get PDF
    We review constraints on the minimal supersymmetric extension of the Standard Model (MSSM) coming from direct searches at accelerators such as LEP, indirect measurements such as b -> s gamma decay and the anomalous magnetic moment of the muon. The recently corrected sign of pole light-by-light scattering contributions to the latter is taken into account. We combine these constraints with those due to the cosmological density of stable supersymmetric relic particles. The possible indications on the supersymmetric mass scale provided by fine-tuning arguments are reviewed critically. We discuss briefly the prospects for future accelerator searches for supersymmetry.Comment: 21 LaTeX pages, 9 eps figures, Invited Contribution to the New Journal of Physics Focus Issue on Supersymmetr

    Adiabatic compression and indirect detection of supersymmetric dark matter

    Full text link
    Recent developments in the modelling of the dark matter distribution in our Galaxy point out the necessity to consider some physical processes to satisfy observational data. In particular, models with adiabatic compression, which include the effect of the baryonic gas in the halo, increase significantly the dark matter density in the central region of the Milky Way. On the other hand, the non-universality in scalar and gaugino sectors of supergravity models can also increase significantly the neutralino annihilation cross section. We show that the combination of both effects gives rise to a gamma-ray flux arising from the Galactic Center largely reachable by future experiments like GLAST. We also analyse in this framework the EGRET excess data above 1 GeV, as well as the recent data from CANGAROO and HESS. The analysis has been carried out imposing the most recent experimental constraints, such as the lower bound on the Higgs mass, the \bsg branching ratio, and the muon g−2g-2. In addition, the recently improved upper bound on B(Bs→μ+μ−)B(B_s \to \mu^+ \mu^-) has also been taken into account. The astrophysical (WMAP) bounds on the dark matter density have also been imposed on the theoretical computation of the relic neutralino density through thermal production.Comment: 32 pages, 11 figures, final version to appear in JCA
    • …
    corecore