2,738 research outputs found
A Universal Temperature Profile for Galaxy Clusters
We investigate the predicted present-day temperature profiles of the hot,
X-ray emitting gas in galaxy clusters for two cosmological models - a current
best-guess LCDM model and standard cold dark matter (SCDM). Our
numerically-simulated "catalogs" of clusters are derived from high-resolution
(15/h kpc) simulations which make use of a sophisticated, Eulerian-based,
Adaptive Mesh-Refinement (AMR) code that faithfully captures the shocks which
are essential for correctly modelling cluster temperatures. We show that the
temperature structure on Mpc-scales is highly complex and non-isothermal.
However, the temperature profiles of the simulated LCDM and SCDM clusters are
remarkably similar and drop-off as
where and . This decrease
is in good agreement with the observational results of Markevitch et al.(1998)
but diverges, primarily in the innermost regions, from their fit which assumes
a polytropic equation of state. Our result is also in good agreement with a
recent sample of clusters observed by BeppoSAX though there is some indication
of missing physics at small radii (). We discuss the
interpretation of our results and make predictions for new x-ray observations
that will extend to larger radii than previously possible. Finally, we show
that, for , our universal temperature profile is consistent with
our most recent simulations which include both radiative cooling and supernovae
feedback.Comment: 8 pages, 6 figures, accepted for publication in ApJ, full-page
version of Fig. 2 at
http://www.cita.utoronto.ca/+AH4-cloken/PAPERS/UTP/f2.ep
Full density matrix dynamics for large quantum systems: Interactions, Decoherence and Inelastic effects
We develop analytical tools and numerical methods for time evolving the total
density matrix of the finite-size Anderson model. The model is composed of two
finite metal grains, each prepared in canonical states of differing chemical
potential and connected through a single electronic level (quantum dot or
impurity). Coulomb interactions are either excluded all together, or allowed on
the dot only. We extend this basic model to emulate decoherring and inelastic
scattering processes for the dot electrons with the probe technique. Three
methods, originally developed to treat impurity dynamics, are augmented to
yield global system dynamics: the quantum Langevin equation method, the well
known fermionic trace formula, and an iterative path integral approach. The
latter accommodates interactions on the dot in a numerically exact fashion. We
apply the developed techniques to two open topics in nonequilibrium many-body
physics: (i) We explore the role of many-body electron-electron repulsion
effects on the dynamics of the system. Results, obtained using exact path
integral simulations, are compared to mean-field quantum Langevin equation
predictions. (ii) We analyze aspects of quantum equilibration and
thermalization in large quantum systems using the probe technique, mimicking
elastic-dephasing effects and inelastic interactions on the dot. Here, unitary
simulations based on the fermionic trace formula are accompanied by quantum
Langevin equation calculations
A catalog of Nearby Poor Clusters of Galaxies
A catalog of 732 optically selected, nearby poor clusters of galaxies
covering the entire sky north of declination is presented. The
poor clusters, called WBL clusters, were identified as concentrations of 3 or
more galaxies with photographic magnitudes brighter than 15.7, possessing a
galaxy surface overdensity of . These criteria are consistent with
those used in the identification of the original Yerkes poor clusters, and this
new catalog substantially increases the sample size of such objects. These poor
clusters cover the entire range of galaxy associations up to and including
Abell clusters, systematically including poor and rich galaxy systems spanning
over three orders of magnitude in the cluster mass function. As a result, this
new catalog contains a greater diversity of richness and structures than other
group catalogs, such as the Hickson or Yerkes catalogs. The information on
individual galaxies includes redshifts and cross-references to other galaxy
catalogs. The entries for the clusters include redshift (where available) and
cross-references to other group and cluster catalogs.Comment: 27 pages, 7 figures, + one 20-page landscape table, accepted for
publication in A
The X-ray Luminosity Function of Nearby Rich and Poor Clusters of Galaxies: A Cosmological Probe
In this letter, we present a new determination of the local (z<0.09) X-ray
luminosity function (XLF) using a large, statistical sample of 294 Abell
clusters and the ROSAT All-Sky-Survey. Given our large sample size, we have
reduced errors by a factor of two for L(X)(0.5-2keV)>10^43 ergs/sec. We combine
our data with previous work in order to explore possible constraints imposed by
the shape of the XLF on cosmological models. A set of currently viable
cosmologies is used to construct theoretical XLFs assuming Lx is proportional
to M^p and a sigma_8-Omega_0 constraint (from Viana & Liddle 1996) based on the
local X-ray temperature function. We fit these models to our observed XLF and
verify that the simplest adiabatic, analytic scaling relation (e.g. Kaiser
1986) disagrees strongly with observations. If we assume that clusters can be
described by the pre-heated, constant core-entropy models of Evrard & Henry
(1991) then the observed XLF is consistent only with 0.1 < Omega_0 < 0.4 if the
energy per unit mass in galaxies is roughly equal to the gas energy (ie if
beta=1). (abridged)Comment: 4 pages, 2 figures, accepted for publication in ApJ Letters. uses
emulateapj.st
The Nearby Supernova Factory
The Nearby Supernova Factory (SNfactory) is an ambitious project to find and
study in detail approximately 300 nearby Type Ia supernovae (SNe~Ia) at
redshifts 0.03<z<0.08. This program will provide an exceptional data set of
well-studied SNe in the nearby smooth Hubble flow that can be used as
calibration for the current and future programs designed to use SNe to measure
the cosmological parameters. The first key ingredient for this program is a
reliable supply of Hubble-flow SNe systematically discovered in unprecedented
numbers using the same techniques as those used in distant SNe searches. In
2002, 35 SNe were found using our test-bed pipeline for automated SN search and
discovery. The pipeline uses images from the asteroid search conducted by the
Near Earth Asteroid Tracking group at JPL. Improvements in our subtraction
techniques and analysis have allowed us to increase our effective SN discovery
rate to ~12 SNe/month in 2003.Comment: 7 pages, 3 figures to be published in New Astronomy Review
The ecology of methane in streams and rivers: patterns, controls, and global significance
Streams and rivers can substantially modify organic carbon (OC) inputs from terrestrial landscapes, and much of this processing is the result of microbial respiration. While carbon dioxide (CO₂) is the major end‐product of ecosystem respiration, methane (CH₄) is also present in many fluvial environments even though methanogenesis typically requires anoxic conditions that may be scarce in these systems. Given recent recognition of the pervasiveness of this greenhouse gas in streams and rivers, we synthesized existing research and data to identify patterns and drivers of CH₄, knowledge gaps, and research opportunities. This included examining the history of lotic CH4 research, creating a database of concentrations and fluxes (MethDB) to generate a global‐scale estimate of fluvial CH₄ efflux, and developing a conceptual framework and using this framework to consider how human activities may modify fluvial CH₄ dynamics. Current understanding of CH₄ in streams and rivers has been strongly influenced by goals of understanding OC processing and quantifying the contribution of CH₄ to ecosystem C fluxes. Less effort has been directed towards investigating processes that dictate in situ CH₄ production and loss. CH₄ makes a meager contribution to watershed or landscape C budgets, but streams and rivers are often significant CH₄ sources to the atmosphere across these same spatial extents. Most fluvial systems are supersaturated with CH₄ and we estimate an annual global emission of 26.8 Tg CH₄, equivalent to ~15‐40% of wetland and lake effluxes, respectively. Less clear is the role of CH₄ oxidation, methanogenesis, and total anaerobic respiration to whole ecosystem production and respiration. Controls on CH₄ generation and persistence can be viewed in terms of proximate controls that influence methanogenesis (organic matter, temperature, alternative electron acceptors, nutrients) and distal geomorphic and hydrologic drivers. Multiple controls combined with its extreme redox status and low solubility result in high spatial and temporal variance of CH₄ in fluvial environments, which presents a substantial challenge for understanding its larger‐scale dynamics. Further understanding of CH₄ production and consumption, anaerobic metabolism, and ecosystem energetics in streams and rivers can be achieved through more directed studies and comparison with knowledge from terrestrial, wetland, and aquatic disciplines."Support for this paper was provided by funding from the North Temperate Lakes LTER program, NSF DEB‐0822700."https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/15-102
Coming down from the trees: is terrestrial activity in Bornean orangutans natural or disturbance driven?
The orangutan is the world's largest arboreal mammal, and images of the red ape moving through the tropical forest canopy symbolise its typical arboreal behaviour. Records of terrestrial behaviour are scarce and often associated with habitat disturbance. We conducted a large-scale species-level analysis of ground-based camera-trapping data to evaluate the extent to which Bornean orangutans Pongo pygmaeus come down from the trees to travel terrestrially, and whether they are indeed forced to the ground primarily by anthropogenic forest disturbances. Although the degree of forest disturbance and canopy gap size influenced terrestriality, orangutans were recorded on the ground as frequently in heavily degraded habitats as in primary forests. Furthermore, all age-sex classes were recorded on the ground (flanged males more often). This suggests that terrestrial locomotion is part of the Bornean orangutan's natural behavioural repertoire to a much greater extent than previously thought, and is only modified by habitat disturbance. The capacity of orangutans to come down from the trees may increase their ability to cope with at least smaller-scale forest fragmentation, and to cross moderately open spaces in mosaic landscapes, although the extent of this versatility remains to be investigated
- …
