312 research outputs found
Constraints on hadronic models in extensive air showers with the Pierre Auger Observatory
Extensive air showers initiated by ultra-high energy cosmic rays are
sensitive to the details of hadronic interactions models, so we present the
main results obtained using the data of the Pierre Auger Observatory. The depth
at which the maximum of the electromagnetic development takes place is the most
sensitive parameter to infer the nature of the cosmic rays. However, the
hadronic models cannot describe consistently the maximum and the muon
measurements at energies higher than those reached at the LHC.Comment: Proceeding of the MESON 2016 (14th International Workshop on Meson
Production, Properties and Interaction KRAK\'OW, POLAND 2nd - 7th June 2016
Constraints on hadronic models in extensive air showers with the Pierre Auger Observatory
Extensive air showers initiated by ultra-high energy cosmic rays are sensitive to the details of hadronic interactions models, so we present the main results obtained using the data of the Pierre Auger Observatory. The depth at which the maximum of the electromagnetic development takes place is the most sensitive parameter to infer the nature of the cosmic rays. However, the hadronic models cannot describe consistently the maximum and the muon measurements at energies higher than those reached at the LHC.Peer Reviewe
Design of a high power production target for the Beam Dump Facility at CERN
The Beam Dump Facility (BDF) project is a proposed general-purpose facility
at CERN, dedicated to beam dump and fixed target experiments. In its initial
phase, the facility is foreseen to be exploited by the Search for Hidden
Particles (SHiP) experiment. Physics requirements call for a pulsed 400 GeV/c
proton beam as well as the highest possible number of protons on target (POT)
each year of operation, in order to search for feebly interacting particles.
The target/dump assembly lies at the heart of the facility, with the aim of
safely absorbing the full high intensity Super Proton Synchrotron (SPS) beam,
while maximizing the production of charmed and beauty mesons. High-Z materials
are required for the target/dump, in order to have the shortest possible
absorber and reduce muon background for the downstream experiment. The high
average power deposited on target (305 kW) creates a challenge for heat
removal. During the BDF facility Comprehensive Design Study (CDS), launched by
CERN in 2016, extensive studies have been carried out in order to define and
assess the target assembly design. These studies are described in the present
contribution, which details the proposed design of the BDF production target,
as well as the material selection process and the optimization of the target
configuration and beam dilution. One of the specific challenges and novelty of
this work is the need to consider new target materials, such as a molybdenum
alloy (TZM) as core absorbing material and Ta2.5W as cladding.
Thermo-structural and fluid dynamics calculations have been performed to
evaluate the reliability of the target and its cooling system under beam
operation. In the framework of the target comprehensive design, a preliminary
mechanical design of the full target assembly has also been carried out,
assessing the feasibility of the whole target system.Comment: 17 pages, 18 figure
MARTA: A high-energy cosmic-ray detector concept with high-accuracy muon measurement
A new concept for the direct measurement of muons in air showers is
presented. The concept is based on resistive plate chambers (RPCs), which can
directly measure muons with very good space and time resolution. The muon
detector is shielded by placing it under another detector able to absorb and
measure the electromagnetic component of the showers such as a water-Cherenkov
detector, commonly used in air shower arrays. The combination of the two
detectors in a single, compact detector unit provides a unique measurement that
opens rich possibilities in the study of air showers.Comment: 11 page
Sensitivity of EAS measurements to the energy spectrum of muons
We have studied how the energy spectrum of muons at production affects some of the most common measurements related to muons in extensive air shower studies, namely, the number of muons at the ground, the slope of the lateral distribution of muons, the apparent muon production depth, and the arrival time delay of muons at ground. We found that by changing the energy spectrum by an amount consistent with the difference between current models (namely EPOS-LHC and QGSJ et -II.04), the muon surface density at ground increases 5% at 20° zenith angle and 17% at 60° zenith angle. This effect introduces a zenith angle dependence on the reconstructed number of muons which might be experimentally observed. The maximum of the muon production depth distribution at 40° increases ∼ 10 g/cm 2 and ∼ 0 g/cm 2 at 60°, which, from pure geometrical considerations, increases the arrival time delay of muons. There is an extra contribution to the delay due to the subluminal velocities of muons of the order of ∼ 3 ns at all zenith angles. Finally, changes introduced in the logarithmic slope of the lateral density function are less than 2%.Peer Reviewe
Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory
We report a multi-resolution search for anisotropies in the arrival
directions of cosmic rays detected at the Pierre Auger Observatory with local
zenith angles up to and energies in excess of 4 EeV ( eV). This search is conducted by measuring the angular power spectrum
and performing a needlet wavelet analysis in two independent energy ranges.
Both analyses are complementary since the angular power spectrum achieves a
better performance in identifying large-scale patterns while the needlet
wavelet analysis, considering the parameters used in this work, presents a
higher efficiency in detecting smaller-scale anisotropies, potentially
providing directional information on any observed anisotropies. No deviation
from isotropy is observed on any angular scale in the energy range between 4
and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no
other deviation from isotropy is observed for moments beyond the dipole one.
The corresponding -values obtained after accounting for searches blindly
performed at several angular scales, are in the case of
the angular power spectrum, and in the case of the needlet
analysis. While these results are consistent with previous reports making use
of the same data set, they provide extensions of the previous works through the
thorough scans of the angular scales.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
Highlights from the Pierre Auger Observatory
The Pierre Auger Observatory is the world's largest cosmic ray observatory.
Our current exposure reaches nearly 40,000 km str and provides us with an
unprecedented quality data set. The performance and stability of the detectors
and their enhancements are described. Data analyses have led to a number of
major breakthroughs. Among these we discuss the energy spectrum and the
searches for large-scale anisotropies. We present analyses of our X
data and show how it can be interpreted in terms of mass composition. We also
describe some new analyses that extract mass sensitive parameters from the 100%
duty cycle SD data. A coherent interpretation of all these recent results opens
new directions. The consequences regarding the cosmic ray composition and the
properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray
Conference, Rio de Janeiro 201
Ultrahigh-energy neutrino follow-up of Gravitational Wave events GW150914 and GW151226 with the Pierre Auger Observatory
On September 14, 2015 the Advanced LIGO detectors observed their first
gravitational-wave (GW) transient GW150914. This was followed by a second GW
event observed on December 26, 2015. Both events were inferred to have arisen
from the merger of black holes in binary systems. Such a system may emit
neutrinos if there are magnetic fields and disk debris remaining from the
formation of the two black holes. With the surface detector array of the Pierre
Auger Observatory we can search for neutrinos with energy above 100 PeV from
point-like sources across the sky with equatorial declination from about -65
deg. to +60 deg., and in particular from a fraction of the 90% confidence-level
(CL) inferred positions in the sky of GW150914 and GW151226. A targeted search
for highly-inclined extensive air showers, produced either by interactions of
downward-going neutrinos of all flavors in the atmosphere or by the decays of
tau leptons originating from tau-neutrino interactions in the Earth's crust
(Earth-skimming neutrinos), yielded no candidates in the Auger data collected
within s around or 1 day after the coordinated universal time (UTC)
of GW150914 and GW151226, as well as in the same search periods relative to the
UTC time of the GW candidate event LVT151012. From the non-observation we
constrain the amount of energy radiated in ultrahigh-energy neutrinos from such
remarkable events.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
- …
