1,312 research outputs found

    The formation of the eccentric-orbit millisecond pulsar J1903+0327 and the origin of single millisecond pulsars

    Get PDF
    The millisecond pulsar J1903+0327 is accompanied by an ordinary G-dwarf star in an unusually wide (Porb95.2P_{\rm orb} \simeq 95.2\,days) and eccentric (e0.44e \simeq 0.44) orbit. The standard model for producing MSPs fails to explain the orbital characteristics of this extraordinary binary, and alternative binary models are unable to explain the observables. We present a triple-star model for producing MSPs in relatively wide eccentric binaries with a normal (main-sequence) stellar companion. We start from a stable triple system consisting of a Low-Mass X-ray Binary (LMXB) with an orbital period of at least 1 day, accompanied by a G-dwarf in a wide and possibly eccentric orbit. Variations in the initial conditions naturally provide a satisfactory explanation for the unexplained triple component in the eclipsing soft X-ray transient 4U~2129+47 or the cataclysmic variable EC 19314-5915. The best explanation for J1903, however, results from the expansion of the orbit of the LMXB, driven by the mass transfer from the evolving donor star to its neutron star companion, which causes the triple eventually to becomes dynamically unstable. Using numerical computations we show that, depending on the precise system configuration at the moment the triple becomes dynamically unstable, the ejection of each of the three components is possible. If the donor star of the LMXB is ejected, a system resembling J1903, will result. If the neutron star is ejected, a single MSP results. This model therefore also provides a straightforward mechanism for forming single MSP in the Galactic disk. We conclude that the Galaxy contains some 30--300 binaries with characteristics similar to J1903, and about an order of magnitude fewer single millisecond pulsars produced with the proposed triple scenario.Comment: ApJ accepted for publicatio

    Search for positively charged strangelets and other related results with E864 at the AGS

    Full text link
    We report on the latest results in the search for positively charged strangelets from E864's 96/97 run at the AGS with sensitivity of about 8×1098\times 10^{-9} per central collision. This contribution also contains new results of a search for highly charged strangelets with Z=+3Z=+3. Production of light nuclei, such as 6He^6He and 6Li^6Li, is presented as well. Measurements of yields of these rarely produced isotopes near midrapidity will help constrain the production levels of strangelets via coalescence. E864 also measures antiproton production which includes decays from antihyperons. Comparisons with antiproton yields measured by E878 as a function of centrality indicate a large antihyperon-to-antiproton ratio in central collisions.Comment: 8 pages, 4 figures; Talk at SQM'98, Padova, Italy (July 20-24th, 1998

    Histone deacetylase 1 and 2 drive differentiation and fusion of progenitor cells in human placental trophoblasts

    Get PDF
    Cell fusion occurs when several cells combine to form a multinuclear aggregate (syncytium). In human placenta, a syncytialized trophoblast (syncytiotrophoblast) layer forms the primary interface between maternal and fetal tissue, facilitates nutrient and gas exchange, and produces hormones vital for pregnancy. Syncytiotrophoblast development occurs by differentiation of underlying progenitor cells called cytotrophoblasts, which then fuse into the syncytiotrophoblast layer. Differentiation is associated with chromatin remodeling and specific changes in gene expression mediated, at least in part, by histone acetylation. However, the epigenetic regulation of human cytotrophoblast differentiation and fusion is poorly understood. In this study, we found that human syncytiotrophoblast development was associated with deacetylation of multiple core histone residues. Chromatin immunoprecipitation sequencing revealed chromosomal regions that exhibit dynamic alterations in histone H3 acetylation during differentiation. These include regions containing genes classically associated with cytotrophoblast differentiation (TEAD4, TP63, OVOL1, CGB), as well as near genes with novel regulatory roles in trophoblast development and function, such as LHX4 and SYDE1. Prevention of histone deacetylation using both pharmacological and genetic approaches inhibited trophoblast fusion, supporting a critical role of this process for trophoblast differentiation. Finally, we identified the histone deacetylases (HDACs) HDAC1 and HDAC2 as the critical mediators driving cytotrophoblast differentiation. Collectively, these findings provide novel insights into the epigenetic mechanisms underlying trophoblast fusion during human placental development

    The Mid-Infrared Instrument for the James Webb Space Telescope, V: Predicted Performance of the MIRI Coronagraphs

    Full text link
    The imaging channel on the Mid-Infrared Instrument (MIRI) is equipped with four coronagraphs that provide high contrast imaging capabilities for studying faint point sources and extended emission that would otherwise be overwhelmed by a bright point-source in its vicinity. Such bright sources might include stars that are orbited by exoplanets and circumstellar material, mass-loss envelopes around post-main-sequence stars, the near-nuclear environments in active galaxies, and the host galaxies of distant quasars. This paper describes the coronagraphic observing modes of MIRI, as well as performance estimates based on measurements of the MIRI flight model during cryo-vacuum testing. A brief outline of coronagraphic operations is also provided. Finally, simulated MIRI coronagraphic observations of a few astronomical targets are presented for illustration

    On the incidence of weak magnetic fields in DA white dwarfs

    Full text link
    Context: About 10% of white dwarfs have magnetic fields with strength in the range between about 10^5 and 3x10^8 G. It is not known whether the remaining white dwarfs are not magnetic, or if they have a magnetic field too weak to be detected with the techniques adopted in the large surveys. Aims. We describe the results of the first survey specifically devised to clarify the detection frequency of kG-level magnetic fields in cool DA white dwarfs. Methods: Using the FORS1 instrument of the ESO VLT, we have obtained Balmer line circular spectropolarimetric measurements of a small sample of cool (DA6 - DA8) white dwarfs. Using FORS and UVES archive data, we have also revised numerous white dwarf field measurements previously published in the literature. Results: We have discovered an apparently constant longitudinal magnetic field of \sim9.5 kG in the DA6 white dwarf WD2105-820. This star is the first weak-field white dwarf that has been observed sufficiently to roughly determine the characteristics of its field. The available data are consistent with a simple dipolar morphology with magnetic axis nearly parallel to the rotation axis, and a polar strength of \simeq 56 kG. Our re-evaluation of the FORS archive data for white dwarfs indicates that longitudinal magnetic fields weaker than 10 kG had previously been correctly identified in at least three white dwarfs. Conclusions: We find that the probability of detecting a field of kG strength in a DA white dwarf is of the order of 10% for each of the cool and hot DA stars. If there is a lower cutoff to field strength in white dwarfs, or a field below which all white dwarfs are magnetic, the current precision of measurements is not yet sufficient to reveal it.Comment: Accepted for publication in Astronomy & Astrophysic

    A Unified, Scalable Framework for Neural Population Decoding

    Full text link
    Our ability to use deep learning approaches to decipher neural activity would likely benefit from greater scale, in terms of both model size and datasets. However, the integration of many neural recordings into one unified model is challenging, as each recording contains the activity of different neurons from different individual animals. In this paper, we introduce a training framework and architecture designed to model the population dynamics of neural activity across diverse, large-scale neural recordings. Our method first tokenizes individual spikes within the dataset to build an efficient representation of neural events that captures the fine temporal structure of neural activity. We then employ cross-attention and a PerceiverIO backbone to further construct a latent tokenization of neural population activities. Utilizing this architecture and training framework, we construct a large-scale multi-session model trained on large datasets from seven nonhuman primates, spanning over 158 different sessions of recording from over 27,373 neural units and over 100 hours of recordings. In a number of different tasks, we demonstrate that our pretrained model can be rapidly adapted to new, unseen sessions with unspecified neuron correspondence, enabling few-shot performance with minimal labels. This work presents a powerful new approach for building deep learning tools to analyze neural data and stakes out a clear path to training at scale.Comment: Accepted at NeurIPS 202

    Formation and Study of a Spherical Plasma Liner for Plasma-Jet-Driven Magneto-Inertial Fusion

    Full text link
    Plasma-jet-driven magneto-inertial fusion (PJMIF) is an alternative approach to controlled nuclear fusion which aims to utilize a line-replaceable dense plasma liner as a repetitive spherical compression driver. In this experiment, first measurements of the formation of a spherical Argon plasma liner formed from 36 discrete pulsed plasma jets are obtained on the Plasma Liner Experiment (PLX). Properties including liner uniformity and morphology, plasma density, temperature, and ram pressure are assessed as a function of time throughout the implosion process and indicate an apparent transition from initial kinetic inter-jet interpenetration to collisional regime near stagnation times, in accordance with theoretical expectation. A lack of primary shock structures between adjacent jets during flight implies that arbitrarily smooth liners may be formed by way of corresponding improvements in jet parameters and control. The measurements facilitate the benchmarking of computational models and understanding the scaling of plasma liners towards fusion-relevant energy density

    On the Interpretation of High Velocity White Dwarfs as Members of the Galactic Halo

    Full text link
    A detailed analysis of 32 of the 38 halo white dwarf candidates identified by Oppenheimer et al. is presented, based on model atmosphere fits to observed energy distributions built from optical BVRI and infrared JHK CCD photometry. Effective temperatures and atmospheric compositions are determined for all objects, as well as masses and cooling ages when trigonometric parallax measurements are available. This sample is combined with that of other halo white dwarf candidates and disk white dwarfs to study the nature of these objects in terms of reduced proper motion diagrams, tangential velocities, and stellar ages. We reaffirm the conclusions of an earlier analysis based on photographic magnitudes of the same sample that total stellar ages must be derived in order to associate a white dwarf with the old halo population, and that this can only be accomplished through precise mass and distance determinations.Comment: 31 pages, 8 figures, accepted for publication in the Astrophysical Journa

    Emergent rules for codon choice elucidated by editing rare arginine codons in Escherichia coli

    Get PDF
    The degeneracy of the genetic code allows nucleic acids to encode amino acid identity as well as noncoding information for gene regulation and genome maintenance. The rare arginine codons AGA and AGG (AGR) present a case study in codon choice, with AGRs encoding important transcriptional and translational properties distinct from the other synonymous alternatives (CGN). We created a strain of Escherichia coli with all 123 instances of AGR codons removed from all essential genes. We readily replaced 110 AGR codons with the synonymous CGU codons, but the remaining 13 “recalcitrant” AGRs required diversification to identify viable alternatives. Successful replacement codons tended to conserve local ribosomal binding site-like motifs and local mRNA secondary structure, sometimes at the expense of amino acid identity. Based on these observations, we empirically defined metrics for a multidimensional “safe replacement zone” (SRZ) within which alternative codons are more likely to be viable. To evaluate synonymous and nonsynonymous alternatives to essential AGRs further, we implemented a CRISPR/Cas9-based method to deplete a diversified population of a wild-type allele, allowing us to evaluate exhaustively the fitness impact of all 64 codon alternatives. Using this method, we confirmed the relevance of the SRZ by tracking codon fitness over time in 14 different genes, finding that codons that fall outside the SRZ are rapidly depleted from a growing population. Our unbiased and systematic strategy for identifying unpredicted design flaws in synthetic genomes and for elucidating rules governing codon choice will be crucial for designing genomes exhibiting radically altered genetic codes.United States. Department of Energy (DE-FG02-02ER63445
    corecore