19 research outputs found

    The miniJPAS survey : A preview of the Universe in 56 colors

    Get PDF
    The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) will scan thousands of square degrees of the northern sky with a unique set of 56 filters using the dedicated 2.55 m Javalambre Survey Telescope (JST) at the Javalambre Astrophysical Observatory. Prior to the installation of the main camera (4.2 deg(2) field-of-view with 1.2 Gpixels), the JST was equipped with the JPAS-Pathfinder, a one CCD camera with a 0.3 deg(2) field-of-view and plate scale of 0.23 arcsec pixel(-1). To demonstrate the scientific potential of J-PAS, the JPAS-Pathfinder camera was used to perform miniJPAS, a similar to 1 deg(2) survey of the AEGIS field (along the Extended Groth Strip). The field was observed with the 56 J-PAS filters, which include 54 narrow band (FWHM similar to 145 angstrom) and two broader filters extending to the UV and the near-infrared, complemented by the u, g, r, i SDSS broad band filters. In this miniJPAS survey overview paper, we present the miniJPAS data set (images and catalogs), as we highlight key aspects and applications of these unique spectro-photometric data and describe how to access the public data products. The data parameters reach depths of mag(AB) similar or equal to 22-23.5 in the 54 narrow band filters and up to 24 in the broader filters (5 sigma in a 3 '' aperture). The miniJPAS primary catalog contains more than 64 000 sources detected in the r band and with matched photometry in all other bands. This catalog is 99% complete at r = 23.6 (r = 22.7) mag for point-like (extended) sources. We show that our photometric redshifts have an accuracy better than 1% for all sources up to r = 22.5, and a precision of 2. The miniJPAS survey demonstrates the capability of the J-PAS filter system to accurately characterize a broad variety of sources and paves the way for the upcoming arrival of J-PAS, which will multiply this data by three orders of magnitude.Peer reviewe

    Systematic decomposition of the neutrinoless double beta decay operator

    Get PDF
    We discuss the systematic decomposition of the dimension nine neutrinoless double beta decay operator, focusing on mechanisms with potentially small contributions to neutrino mass, while being accessible at the LHC. We first provide a (d = 9 tree-level) complete list of diagrams for neutrinoless double beta decay. From this list one can easily recover all previously discussed contributions to the neutrinoless double beta decay process, such as the celebrated mass mechanism or ¿exotics¿, such as contributions from left-right symmetric models, R-parity violating supersymmetry and leptoquarks. More interestingly, however, we identify a number of new possibilities which have not been discussed in the literature previously. Contact to earlier works based on a general Lorentz-invariant parametrisation of the neutrinoless double beta decay rate is made, which allows, in principle, to derive limits on all possible contributions. We furthermore discuss possible signals at the LHC for mediators leading to the short-range part of the amplitude with one specific example. The study of such contributions would gain particular importance if there were a tension between different measurements of neutrino mass such as coming from neutrinoless double beta decay and cosmology or single beta decay

    Dissecting quasars with the J-PAS narrow-band photometric survey

    Get PDF
    Nuclear Activity in Galaxies Across Cosmic Time, Proceedings of the conference held 7-11 October 2019 in Addis Ababa, Ethiopia. Edited by Mirjana Pović et al. Proceedings of the International Astronomical Union, Volume 356, pp. 12-16The J-PAS survey will soon start observing thousands of square degrees of the Northern Sky with its unique set of 56 narrow band filters covering the entire optical wavelength range, providing, effectively, a low resolution spectra for every object detected. Active galaxies and quasars, thanks to their strong emission lines, can be easily identified and characterized with J-PAS data. A variety of studies can be performed, from IFU-like analysis of local AGN, to clustering of high-z quasars. We also expect to be able to extract intrinsic physical quasar properties from the J-PAS pseudo-spectra, including continuum slope and emission line luminosities. Here we show the first attempts of using the QSFit software package to derive the properties for 22 quasars at 0.8 < z < 2 observed by the miniJPAS survey, the first deg2 of J-PAS data obtained with an interim camera. Results are compared with the ones obtained by applying the same software to SDSS quasar spectra.Financial support from the State Agency for Research of the Spanish MCIU through the "Center of Excellence Severo Ochoa" award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709

    The miniJPAS survey: Identification and characterization of galaxy populations with the J-PAS photometric system

    Get PDF
    Full list of authors: González Delgado, R. M.; Díaz-García, L. A.; de Amorim, A.; Bruzual, G.; Cid Fernandes, R.; Pérez, E.; Bonoli, S.; Cenarro, A. J.; Coelho, P. R. T.; Cortesi, A.; García-Benito, R.; López Fernández, R.; Martínez-Solaeche, G.; Rodríguez-Martín, J. E.; Magris, G.; Mejía-Narvaez, A.; Brito-Silva, D.; Abramo, L. R.; Diego, J. M. ; Dupke, R. A.; Hernán-Caballero, A.; Hernández-Monteagudo, C.; López-Sanjuan, C.; Marín-Franch, A.; Marra, V.; Moles, M.; Montero-Dorta, A.; Queiroz, C.; Sodré, L.; Varela, J.; Vázquez Ramió, H.; Vílchez, J. M.; Baqui, P. O.; Benítez, N.; Cristóbal-Hornillos, D.; Ederoclite, A.; Mendes de Oliveira, C.; Civera, T.; Muniesa, D.; Taylor, K.; Tempel, E.; J-PAS Collaboration.The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) will soon start imaging thousands of square degrees of the northern sky with its unique set of 56 filters (spectral resolution of R - 60). Before the arrival of the final instrument, we observed 1 deg2 on the AEGIS field with an interim camera with all the J-PAS filters. Taking advantage of these data, dubbed miniJPAS, we aim at proving the scientific potential of the J-PAS to derive the stellar population properties of galaxies via fitting codes for spectral energy distributions (SEDs), with the ultimate goal of performing galaxy evolution studies across cosmic time. One parametric (BaySeAGal) and three non-parametric (MUFFIT, AlStar, and TGASPEX) SED-fitting codes are used to constrain the stellar mass, age, metallicity, extinction, and rest-frame and dust-corrected (u-r) colours of a complete flux-limited sample (rSDSS - 22.5 AB) of miniJPAS galaxies that extends up to z = 1. We generally find consistent results on the galaxy properties derived from the different codes, independently of the galaxy spectral type or redshift; this is remarkable considering that 25% of the J-spectra have signal-to-noise ratios (S/N) -3. For galaxies with S=N - 10, we estimate that the J-PAS photometric system will allow us to derive the stellar population properties of rest-frame (u - r) colour, stellar mass, extinction, and mass-weighted age with a precision of 0:04 - 0:02 mag, 0:07 - 0:03 dex, 0:2 - 0:09 mag, and 0:16 - 0:07 dex, respectively. This precision is equivalent to that obtained with spectroscopic surveys of similar S/N. By using the dust-corrected (u - r) colour mass diagram, a powerful proxy for characterizing galaxy populations, we find: (i) that the fraction of red and blue galaxies evolves with cosmic time, with red galaxies being -38% and -18% of the whole population at z = 0:1 and z = 0:5, respectively, and (ii) consistent results between codes for the average intrinsic (u-r) colour, stellar mass, age, and stellar metallicity of blue and red galaxies and their evolution up to z = 1. At all redshifts, the more massive galaxies belong to the red sequence, and these galaxies are typically older and more metal-rich than their counterparts in the blue cloud. Our results confirm that with J-PAS data we will be able to analyse large samples of galaxies up to z - 1, with galaxy stellar masses above log(M?=M-) - 8:9, 9.5, and 9.9 at z = 0:3, 0.5, and 0.7, respectively. The star formation history of a complete sub-sample of galaxies selected at z - 0:1 with log(M=M-) > 8:3 constrains the cosmic evolution of the star formation rate density up to z - 3, in good agreement with results from cosmological surveys. © ESO 2021.Acknowledgements. R.G.D., L.A.D.G., R.G.B., G.M.S., J.R.M., and E.P. acknowledge financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709), and to the AYA2016-77846-P and PID2019-109067-GB100. L.A.D.G. also acknowledges financial support by the Ministry of Science and Technology of Taiwan (grant MOST 106-2628-M-001-003-MY3) and by the Academia Sinica (grant AS-IA-107-M01). G.B. acknowledges financial support from the National Autonomous University of México (UNAM) through grant DGAPA/PAPIIT IG100319 and from CONACyT through grant CB2015-252364. SB acknowledges PGC2018-097585-B-C22, MINECO/FEDER, UE of the Spanish Ministerio de Econo-mia, Industria y Competitividad. L.S.J. acknowledges support from Brazilian agencies FAPESP (2019/10923-5) and CNPq (304819/201794). P.O.B. acknowledges support from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. P.R.T.C. acknowledges financial support from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) process number 2018/05392-8 and Conselho Nacional de Desenvolvi-mento Científico e Tecnológico (CNPq) process number 310041/2018-0. V.M. thanks CNPq (Brazil) for partial financial support. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 888258. E.T. acknowledges support by ETAg grant PRG1006 and by EU through the ERDF CoE grant TK133. Based on observations made with the JST/T250 telescope and PathFinder camera for the miniJPAS project at the Observatorio Astrofísico de Javalambre (OAJ), in Teruel, owned, managed, and operated by the Centro de Estudios de Física del Cosmos de Aragón (CEFCA). We acknowledge the OAJ Data Processing and Archiving Unit (UPAD) for reducing and calibrating the OAJ data used in this work. Funding for OAJ, UPAD, and CEFCA has been provided by the Governments of Spain and Aragón through the Fondo de Inver-siones de Teruel; the Aragón Government through the Research Groups E96, E103, and E16_17R; the Spanish Ministry of Science, Innovation and Universities (MCIU/AEI/FEDER, UE) with grant PGC2018-097585-B-C21; the Spanish Ministry of Economy and Competitiveness (MINECO/FEDER, UE) under AYA2015-66211-C2-1-P, AYA2015-66211-C2-2, AYA2012-30789, and ICTS-2009-14; and European FEDER funding (FCDD10-4E-867, FCDD13-4E-2685).Peer reviewe

    The Longitudinal Aging Study Amsterdam: cohort update 2016 and major findings

    Full text link
    corecore