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Abstract

We discuss the systematic decomposition of the dimension nine neutrinoless double beta
decay operator, focusing on mechanisms with potentially small contributions to neutrino mass,
while being accessible at the LHC. We first provide a (d = 9 tree-level) complete list of dia-
grams for neutrinoless double beta decay. From this list one can easily recover all previously
discussed contributions to the neutrinoless double beta decay process, such as the celebrated
mass mechanism or “exotics”, such as contributions from left-right symmetric models, R-parity
violating supersymmetry and leptoquarks. More interestingly, however, we identify a number
of new possibilities which have not been discussed in the literature previously. Contact to ear-
lier works based on a general Lorentz-invariant parametrisation of the neutrinoless double beta
decay rate is made, which allows, in principle, to derive limits on all possible contributions. We
furthermore discuss possible signals at the LHC for mediators leading to the short-range part of
the amplitude with one specific example. The study of such contributions would gain particular
importance if there were a tension between different measurements of neutrino mass such as
coming from neutrinoless double beta decay and cosmology or single beta decay.
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Figure 1: Black Box diagram relating the Majorana nature of neutrinos with 0νββ decay.

1 Introduction

Neutrinoless double beta (0νββ ) decay is mostly known as a sensitive probe for Majorana neutrino
masses [1–4]. However, the mass mechanism is only one out of many possible contributions to the
0νββ decay amplitude [5, 6]. The aim of the current paper is to provide a (tree-level) complete list
of all possible contributions to the neutrinoless double beta decay dimension nine (d = 9) operator:

O ∝ ūū dd ēē (1)

From this list one can easily recover all known contributions to 0νββ decay. More interestingly,
however, we will identify a number of new possibilities to generate 0νββ decay not discussed in the
literature previously.

The Black Box theorem [7–9] states that since observation of 0νββ indicates that lepton number
is not conserved, it proves that neutrinos must be Majorana particles.1 Graphically the theorem can
be depicted as shown in Fig. 1: If 0νββ decay is observed, Majorana neutrino masses are generated at
least at the 4-loop order, which is a model-independent statement. This does not mean that the 0νββ
decay contribution from Fig. 1 is the leading contribution to neutrino mass; in fact, in specific models,
neutrino mass is often generated at a lower loop order. A recent calculation [11] indeed confirms
that the neutrino mass generated through this 4-loop diagram with the 0νββ operator of the size
of the current limits is roughly mν ≃ O(10−24) eV. Obviously, this number is too small to explain
the neutrino masses observed in oscillation experiments, and also many orders of magnitude smaller
than the current sensitivity of 0νββ decay via the mass mechanism. The correct interpretation of
the black box theorem thus is: If 0νββ decay is observed, neutrinos are Majorana particles, whether
the contribution from neutrino mass dominates 0νββ decay or not.

Up to now, 0νββ decay has not been observed. The best half-life limits on 0νββ decay come
from experiments on two isotopes: 76Ge and 136Xe. The Heidelberg-Moscow collaboration gives
T 0νββ
1/2 (76Ge) ≥ 1.9 · 1025 yr [12],2 while the recent results from EXO-200 and KamLAND-ZEN quote

T 0νββ
1/2 (136Xe) ≥ 1.6 · 1025 yr [14] and T 0νββ

1/2 (136Xe) ≥ 1.9 · 1025 yr [15], both at the 90 % CL. There is,

however, reasonable hope that the half-lifes in excess of 1026 yr will be probed within the next few

1For a recent version of the black box theorem including lepton flavour violation, see [10].
2There is also a claim [13] for the observation of 0νββ decay in 76Ge, which is, however, not supported by any

other experiment.
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years, since a number of next generation 0νββ experiments are under construction or already taking
data. For recent reviews and a list of experimental references, see for example [2, 4]. Moreover,
proposals for ton-scale next-to-next generation 0νββ experiments claim that even sensitivities in
excess T 0νββ

1/2 ∼ 1027 yr can be reached for 136Xe [16,17] and 76Ge [18,19]. For a brief summary of the

long-term prospects for 0νββ experiments, see for example [20].

The interpretation of these half-life limits in terms of particle physics parameters requires assump-
tions, such as which contribution dominates the 0νββ decay amplitude. If neutrinos have Majorana
masses, 0νββ decay can be mediated by Majorana neutrino propagation, depending on the mag-
nitude of the effective neutrino mass given by 〈mν〉 =

∑
j U

2
ejmj . This mechanism is hence forth

referred to as the the mass mechanism. The mass mechanism has attracted most of the attention
within the community. The reason for this “bias” is rather straightforward: Neutrinos exist and os-
cillation experiments [21–28] have shown that (at least two) neutrinos have non-zero masses. Thus, if
neutrinos are indeed Majorana particles, the mass mechanism is guaranteed to give a contribution to
the 0νββ decay amplitude — in this sense the mass mechanism is the minimal possibility to generate
0νββ decay. With the assumption of the mass mechanism being the dominant contribution, the
current limits for the half-life of 0νββ decay [12, 14] correspond to the limits 〈mν〉 <∼ (0.2 − 0.35)
eV [〈mν〉 <∼ (0.17 − 0.30) eV] for 76Ge [136Xe] using the latest QRPA matrix elements of [29] to
〈mν〉 <∼ 0.53 eV [〈mν〉 <∼ 0.34 eV] with the matrix elements calculated within the shell model [30,31].

Future limits of order T 0νββ
1/2 ∼ 1027 yr will then probe 〈mν〉 <∼ (0.02−0.06) eV that is of the order of

the mass scale suggested by atmospheric neutrino oscillations,
√

∆m2
atm ≃ 0.05 eV [32]. If the next

generation of 0νββ decay experiments detects a signal, one might expect that future cosmological
data [33–35] also provide indications for non-zero neutrino masses. Contradicting results from 0νββ
(observation) and cosmology (limit) then might point to a non-standard explanation for 0νββ decay,
see [36] for a detailed discussion of the interplay of different data.

Contributions to the 0νββ decay rate can be divided into a short-range [37] and a long-range [38]
part. The long-range contributions, which the neutrino mass mechanism belongs to, can lead in
some cases to very stringent limits on the new physics scale Λ >∼ λeffLNV×(102 − 103) TeV, where
λeffLNV is some effective Lepton Number Violating (LNV) coupling that depends on the model under
consideration. Therefore, for some of the “exotic” mechanisms discussed in the literature, falling into
this category, the half-life limits from 0νββ decay themselves yield the most stringent bounds. On
the other hand, in the case of the short-range contribution, i.e., the 0νββ amplitude is mediated only
by heavy mediators with masses at a high energy scale Λ, the effective Lagrangian describing 0νββ
decay is simply proportional to 1/Λ5. In that case, the next generation 0νββ decay experiments are
sensitive to new physics at scales Λ >∼ (few) TeV.

Data from the LHC will probe physics at the TeV scale, i.e., of a similar scale as the sensitivity
of 0νββ decay experiments in case of short-range contributions. In fact, first limits on particular
models have already been published. Just to mention one particular example, in Left-Right (LR)
symmetric models, 0νββ decay can be generated by WR − N −WR exchange, where N is a heavy
Majorana neutrino and WR is the charged gauge boson of the right-handed SU(2) [39].3 Using the
nuclear matrix elements of [42], the limit on the half-life [14] corresponds to 〈mN〉 = mWR

>∼ 1.3 TeV
(assuming that the gauge coupling of the right-handed and left-handed SU(2)s are equal), while the

3 The idea to use accelerator data to test 0νββ decay contributions in left-right symmetric models has a long history.
“Inverse” neutrinoless double beta decay, i.e., e−e− → WRWR has been first discussed in [40]. WR production at
hadron colliders, followed by the decay WR → µ+µ+jj was first studied in [41].
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recent analysis by the ATLAS [43] and the CMS collaborations [44] give mWR
≥ (2.3− 2.5) TeV for

mN <∼ 1.3 TeV. 4 Because of this complementarity of 0νββ decay and LHC, we will pay particular
attention to the short-range part of the 0νββ decay amplitude. However, our decomposition of the
d = 9 operator, which will be shown in Sec. 3, is general, and the corresponding limits for the
long-range part can be easily derived as well, using the recipes described below and in the appendix.

Our paper is not the first work attempting a systematic analysis of the d = 9 0νββ decay operator,
relevant earlier papers include [37, 38, 45–47]. The authors of [37, 38] worked out a general Lorentz-
invariant parametrisation for the 0νββ decay rate. This approach is motivated from the nuclear
physics point of view of 0νββ decay. At low energies, adequate for 0νββ decay studies, any of the
0νββ diagrams in which heavy mediation fields are inserted among the six fermions ūūddēē will be
reduced to a finite set of combinations of the hadronic and the leptonic currents corresponding to a
basic set of nuclear matrix elements. This approach leaves the LNV parameters in the 0νββ decay
rate unspecified, and our current work can be understood as providing a (tree-level) complete list
of all possible ultraviolet completions (“models”) for 0νββ decay. As expected, at low energies any
information on the particle models is reduced then to one (or a combination of more than one) of
the coefficients ǫi of the effective 0νββ currents presented in [37, 38].

Our approach also has some overlap with [45, 46]. These authors write down all effective LNV
operators from d = 5 (the famous Weinberg operator [48]) to d = 11. The main motivation of those
papers is to identify all possible Majorana neutrino mass models via the effective LNV operators [45].
This effective operator treatment allows to estimate the scale Λ at which new physics appears, if these
operators give neutrino masses or a 0νββ decay amplitude of the order of the current experimental
sensitivity [46]. However, our current work is complementary to these papers, in that we list all
possible decompositions of a particular LNV operator, that is the d = 9 0νββ operator. We also
go one step further than these works in the estimation of the bounds on the LNV operator, by
making contact with the nuclear matrix element calculation of [37, 38], instead of simply relying on
dimensional arguments.5 Finally, there is also the recent paper [47], where the authors study 0νββ
decay from an effective Lagrangian point of view. Operators of d > 9 are considered, in which the
Standard Model (SM) Higgs doublets are additionally inserted to the d = 9 operator Eq. (1). Note,
however, that [47] considers only the case when new physics is confined to the leptonic part of the
0νββ decay amplitude.

The rest of this paper is organised as follows. In the next section, as a preparation for our
approach, we will first recapitulate the characteristics of the long-range and short-range contributions
to 0νββ decay. Then, in Sec. 3 we will focus on the decomposition of effective operators to find all
possible models generating the d = 9 0νββ operator. Through an example, we will study the crucial
role that the LHC can play in discriminating such models in Sec. 4. The relations between the list
of particle models and the general decay rate of [37,38] are given in tabular form in the appendix for
the short-range part for the case of scalar exchange. The corresponding relations for the other parts
of the decay rate can be easily derived from the recipes spelled out below and in the appendix.

4Here, (〈mN 〉)−1 ≡∑j V
2
ej/mNj

is a sum over all heavy neutrinos coupling to the electron, while in the limit from
the LHC experiments it is assumed that only one heavy neutrino (the lightest) has a mass below the mass of WR.

5We also found a d = 9 LNV operator uRuRdRdReReR that was not listed in the earlier papers [45, 46].
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Figure 2: Different contributions to 0νββ : (a)-(c) A light neutrino is exchanged between two point-
like vertices, which are classified as “long-range”. (d) Contributions mediated by heavy particles
are classified as “short-range”. Diagram (a) corresponds to the mass mechanism — the standard
interpretation of 0νββ with Majorana neutrino propagation. See main text for details.

2 Model-independent parametrisation of the 0νββ decay

rate

A general Lorentz-invariant parametrisation of new physics contributions to 0νββ has been developed
in [37,38]. This formalism allows to derive limits on any LNV new physics contributing to 0νββ decay
without recalculation of nuclear matrix elements. In order to make contact with this formalism, we
recapitulate the main results and definitions of [37, 38] in this section. The total amplitude of 0νββ
is most conveniently divided into two parts: Long-range and short-range contributions, see Fig. 2.

2.1 Long-range contributions

Consider first the long-range part. Here, we can sub-divide the amplitudes into parts (a)-(c) as
shown in the figure. In case (a), a massive Majorana neutrino is exchanged between two SM charged
current vertices, while cases (b) and (c) contain one and two (unspecified) non-standard interactions
respectively, indicated by the black blobs.

At low energy, we can write the relevant part of the effective Lagrangian with the leptonic (j)
and hadronic (J) charged currents as

L4-Fermi = LSM + LLNV

=
GF√
2

[
jµV−AJV−A,µ +

∑

α, β 6= V −A

ǫβα jβJα

]
. (2)

Here, we follow the notations of j and J adopted in [38], which are6

JµV±A = (JR/L)
µ ≡ uγµ(1± γ5)d , jµV±A ≡ eγµ(1± γ5)ν , (3)

JS±P = JR/L ≡ u(1± γ5)d , jS±P ≡ e(1± γ5)ν ,
JµνTR/L

= (JR/L)
µν ≡ uγµν(1± γ5)d , jµνTR/L

≡ eγµν(1± γ5)ν ,
6Note that the difference in normalisation of Eq. (3) and the normal convention for L/R in particle physics leads

to various powers of two, see appendix, when relating models with the ǫβα of Eq. (2).
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Isotope |ǫV+A
V−A| |ǫV+A

V+A| |ǫS+PS−P | |ǫS+PS+P | |ǫTRTL | |ǫTRTR|
136Xe 2.8 · 10−9 5.6 · 10−7 6.8 · 10−9 6.8 · 10−9 4.8 · 10−10 8.1 · 10−10

Table 1: Limits on effective long-range interactions from T 0νββ
1/2 (136Xe) >∼ 1.6 · 1025 ys [14] which

corresponds to approximately 〈mν〉 <∼ 0.35 eV in the mass mechanism. These limits are taken from [6]
and are derived assuming only one ǫ is different from zero at a time.

where the Lorenz tensor matrix γµν is defined as γµν = i
2
[γµ, γν ]. Recall that PL/R = 1

2
(1 ∓ γ5) and

we will use the short-hand notation L and R for left-handed and right-handed fermions, respectively.
The first term of Eq. (2) is the SM charged current interaction, and the second term contains the new
physics contributions, which do not take the Lorenz structure of the standard four-Fermi interaction
(V −A)(V −A). The coefficients ǫβα for the exotic four-Fermi interactions are normalised to the SM
charged current strength GF/

√
2. If these dimensionless coefficients take numbers smaller than one,

diagram (c) in Fig. 2 is of order ǫ2 and becomes immediately sub-dominant in the 0νββ amplitudes.

The neutrino propagator in diagrams (a)-(c) contains two terms: mν + q/, the mass and the
momentum terms. Since the charged current for leptons in the SM is purely left-handed, it picks out
the mν part, i.e., the amplitude of the (standard) mass mechanism of 0νββ is proportional to mν .
Clearly, then not all ǫβα can be constrained from 0νββ decay, due to the absence of a lower bound on
mν . On the other hand, if the new physics in diagram (b) generates a right-chiral lepton interaction
(jV+A, jS+P , jTR), the q/-term in the neutrino propagator will enter the amplitude. The size of the
3-momentum |~q| can be estimated from the typical inter-nucleon distance of two neutrons in the
nucleus to be of the order of 100 MeV. Therefore, the amplitudes with q/-terms are highly enhanced
in comparison with those with the mν-term.7 For this reason, the coefficients ǫβα with right-chiral
leptonic interactions, are heavily constrained by 0νββ decay. The hadronic and leptonic currents are
best defined as currents of definite chirality (as defined at Eq. (3)) to take care of this fact.

In Table 1 we give the updated bounds for all ǫβα, which are taken from [6]. Note that the index
β for the leptonic current in the table takes neutrino interactions with the chirality R in the exotic
four-Fermi interaction, while the hadronic currents can be of either L- or R-type. Note also that,
while the ǫβα are defined as dimensionless coefficients, they scale like ǫβα ∝ (λeffLNV/Λ)

2.

2.2 Short-range contributions

The short-range contributions encompass all processes where no light neutrinos are exchanged, and
can be understood as one d = 9 effective vertex diagram as shown in diagram (d) in Fig. 2. In this
case, one can use the basis of low energy hadronic currents J as defined in Eq. (3), while for the
currents j of two electrons, one defines

jL/R ≡ e(1∓ γ5)ec , (4)

(jL/R)
µ ≡ eγµ(1∓ γ5)ec,

7This momentum-enhancement mechanism has also been discussed in the context of the other LNV processes, such
as µ−N → e+N [49, 50] and µ−N → µ+N [51, 52]. A possibility of a direct experimental test of the four-Fermi LNV
interaction with a right-chiral lepton current is examined in [53].
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Isotope |ǫ1| |ǫ2| |ǫLLz(RRz)3 | |ǫLRz(RLz)3 | |ǫ4| |ǫ5|
136Xe 2.6 · 10−7 1.4 · 10−9 1.1 · 10−8 1.7 · 10−8 1.2 · 10−8 1.2 · 10−7

Table 2: Limits on effective short-range interactions. These limits are taken from [6] and are derived
assuming only one ǫ is different from zero at a time.

v1 v2

v3

v4

Topology I Topology II

v1 v2 v3 v4

Figure 3: The two basic tree-level topologies realizing a d = 9 0νββ operator. External lines are
fermions; internal lines can be fermions (solid), or scalars or vectors (zig zag).

to express the effective Lagrangian for short-range 0νββ as [37]

Leff =
G2
F

2
m−1
P [ǫ1JJj + ǫ2J

µνJµνj + ǫ3J
µJµj + ǫ4J

µJµνj
ν + ǫ5J

µJjµ] , (5)

where mP is the mass of proton. Here we omitted the indices for clarity. However, if chirality
changes play a role in the value of the 0νββ decay rate, one needs to maintain the chirality indices
and define ǫi = ǫxyzi , with x, y, z ∈ {L,R}; cf., App. A.1 for details. Since (jR)

µ = −(jL)µ, we define
(j)µ = (jR)

µ = −(jL)µ.
Current limits on short-range type ǫi are summarised in Tab. 2. Note that, different from the ǫβα

of the long-range part, here ǫi scale as ǫi ∝ (λeffLNV)
4/Λ5. For λeffLNV ≃ gL the limits given in Tab. 2

then correspond to Λ >∼ (1− 3) TeV.

3 General decomposition of the d = 9 0νββ decay operator

The d = 9 effective operator generating 0νββ decay at the quark level can be written as in Eq. (1).
In this section, we decompose this operator, following the techniques developed in [54–57], in terms
of the SM quantum numbers of the mediators. Note that the results obtained in this section are
valid for both short- and long-range contributions, while the quantitative impact of the contribution
to 0νββ depends on the Lorentz nature. Details are left for the appendix, where we tabulate all
possibilities for the short-range part mediated by fermions and scalars.

At tree-level, there are only two possible topologies for this operator, which are shown in Fig. 3.
For topology I (T-I) the internal particles between vertices v1 − v2 and v3 − v4 can be either scalars
(S) or vectors (V), while the particle between v2 − v3 must be a fermion (F). The topology thus
contains three classes of diagrams: VFV, SFS and SFV. The inner particles for topology II (T-II),
on the other hand, must all be either scalars or vectors, all possible combination in principle can
occur (SSS, VVV, VVS and SSV).
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One has multiple choices for assigning the fermions to the outer legs. Once a particular assignment
is chosen, the electric charge and the colour of the internal particles are fixed (the latter up to a
two-fold ambiguity), but not the U(1)Y hypercharge. The assignments of hypercharge are fixed as
well, once the chiralities of the six outer fermions are determined. We will come back to this point
later in the discussion, and more details are given in the appendix. We will now discuss the general
decompositions of T-I and T-II in turn.

3.1 Decomposition of topology I

In Tab. 3 we list the general decompositions for the 0νββ decay operator for T-I. The chiralities of
the outer fermions are left unspecified here for a more compact presentation. In total there are 18
(times 2 for the choice of colour) possibilities for realizing T-I. Because of the SU(3) multiplication
rules, 3̄ ⊗ 3̄ = 3a ⊕ 6̄s and 3 ⊗ 3̄ = 1 ⊕ 8, there are always two possible colour assignments for
the internal particles. The table is valid for all three possible classes of diagrams (VFV, SFS and
SFV). In some of the cases listed in Tab. 3, only VFV or SFV exchange is possible, because in the
decomposition 3̄⊗ 3̄ = 3a ⊕ 6̄s the coupling of a scalar to two identical quarks (two 3̄) vanishes for
the 3a. These affects all the cases in T-I-3, T-I-4-ii and T-I-5-ii, see table for nomenclature.

Each of the models listed in this table leads to an effective operator with a different Lorentz
structure, which needs to be projected onto the basis shown in Eqs. (2) and (5), once the chiralities
are fixed. The projection can be done by Fierz transformations and the transformations of the SM
gauge group indices. This allows to identify immediately if a model gives important contributions to
0νββ decay. More details and results of this procedure are shown in the appendix.

From this table we can identify all (T-I) contributions discussed in the literature, once the nature
of the internal bosons and the chirality of the outer fermions are chosen. For example, the mass
mechanism corresponds to T-I-1-i, with the bosons being vectors (W±) and all the outer fermions
being left-handed. In this case, the quantum numbers of the internal fermion ψ are equal to those
of a (light) neutrino, and the mass term is picked out from the propagator.

Other examples can be identified as easily. To list a few more, the afore-mentioned WR−N −WR

exchange diagram is also contained in T-I-1-i with vectors (W±
R ), all outer fermions now being right-

handed. Since N must be heavy, however, this is now a short-range contribution. Concrete models
can lead to the occurrence of more than one of the operators listed, an example is provided by
(trilinear) R-parity violating (RPV) supersymmetry (SUSY). The six short-range diagrams [59, 60]
for the RPV SUSY mechanism of 0νββ decay [58], correspond to class SFS and are identified as
T-I-1-i (ẽ− χ̃0− ẽ diagram), T-I-2-i-b (ẽ− χ̃0− d̃), T-I-2-ii-b (ẽ− χ̃0− ũ), T-I-2-iii-a (ũ− χ̃0/g̃− d̃),
T-I-4-i (ũ− χ̃0/g̃− ũ) and T-I-5-i (d̃− χ̃0/g̃− d̃). In those diagrams, the neutralino χ̃0 corresponds to
ψ(0, 1), while the gluino g̃ corresponds to ψ(0, 8). Finally, the leptoquark (LQ) mechanism of [65,66]
is a long-range contribution of the class SFV with T-I-2-i-b and T-I-2-ii-b. The internal fermion
ψ(0, 1) is again identified with a light neutrino.

A few more comments on Tab. 3 might be in order. There are a total of six possibilities in
which the intermediate fermion transforms ψ(0, 1) under the gauge symmetries (U(1)em, SU(3)c).
Only they can lead to long-range contributions, all the other models in the list are necessarily of the
short-range type. Among those six, only the cases marked (a) or (b) in the column “Long Range?”
can lead to interesting constraints, since the remaining three cases marked as (c) are suppressed with
ǫ2. Note, however, that all of these cases can also be of short-range type. There are 12 (times two)

7



Long Mediator (U(1)em, SU(3)c)
# Decomposition Range? S or Vρ ψ S′ or V ′

ρ Models/Refs./Comments

1-i (ūd)(ē)(ē)(ūd) (a) (+1,1) (0,1) (−1,1) Mass mechan., RPV [58–60],
LR-symmetric models [39],
Mass mechanism with νS [61],
TeV scale seesaw, e.g., [62, 63]

(+1,8) (0,8) (−1,8) [64]
1-ii-a (ūd)(ū)(d)(ēē) (+1,1) (+5/3,3) (+2,1)

(+1,8) (+5/3,3) (+2,1)
1-ii-b (ūd)(d)(ū)(ēē) (+1,1) (+4/3,3) (+2,1)

(+1,8) (+4/3,3) (+2,1)

2-i-a (ūd)(d)(ē)(ūē) (+1,1) (+4/3,3) (+1/3,3)
(+1,8) (+4/3,3) (+1/3,3)

2-i-b (ūd)(ē)(d)(ūē) (b) (+1,1) (0,1) (+1/3,3) RPV [58–60], LQ [65,66]
(+1,8) (0,8) (+1/3,3)

2-ii-a (ūd)(ū)(ē)(dē) (+1,1) (+5/3,3) (+2/3,3)
(+1,8) (+5/3,3) (+2/3,3)

2-ii-b (ūd)(ē)(ū)(dē) (b) (+1,1) (0,1) (+2/3,3) RPV [58–60], LQ [65,66]
(+1,8) (0,8) (+2/3,3)

2-iii-a (dē)(ū)(d)(ūē) (c) (−2/3,3) (0,1) (+1/3,3) RPV [58–60]
(−2/3,3) (0,8) (+1/3,3) RPV [58–60]

2-iii-b (dē)(d)(ū)(ūē) (−2/3,3) (−1/3,3) (+1/3,3)
(−2/3,3) (−1/3,6) (+1/3,3)

3-i (ūū)(ē)(ē)(dd) (+4/3,3) (+1/3,3) (−2/3,3) only with Vρ and V ′
ρ

(+4/3,6) (+1/3,6) (−2/3,6)
3-ii (ūū)(d)(d)(ēē) (+4/3,3) (+5/3,3) (+2,1) only with Vρ

(+4/3,6) (+5/3,3) (+2,1)
3-iii (dd)(ū)(ū)(ēē) (+2/3,3) (+4/3,3) (+2,1) only with Vρ

(+2/3,6) (+4/3,3) (+2,1)

4-i (dē)(ū)(ū)(dē) (c) (−2/3,3) (0,1) (+2/3,3) RPV [58–60]
(−2/3,3) (0,8) (+2/3,3) RPV [58–60]

4-ii-a (ūū)(d)(ē)(dē) (+4/3,3) (+5/3,3) (+2/3,3) only with Vρ
(+4/3,6) (+5/3,3) (+2/3,3) see Sec. 4 (this work)

4-ii-b (ūū)(ē)(d)(dē) (+4/3,3) (+1/3,3) (+2/3,3) only with Vρ
(+4/3,6) (+1/3,6) (+2/3,3)

5-i (ūē)(d)(d)(ūē) (c) (−1/3,3) (0,1) (+1/3,3) RPV [58–60]
(−1/3,3) (0,8) (+1/3,3) RPV [58–60]

5-ii-a (ūē)(ū)(ē)(dd) (−1/3,3) (+1/3,3) (−2/3,3) only with V ′
ρ

(−1/3,3) (+1/3,6) (−2/3,6)
5-ii-b (ūē)(ē)(ū)(dd) (−1/3,3) (−4/3,3) (−2/3,3) only with V ′

ρ

(−1/3,3) (−4/3,3) (−2/3,6)

Table 3: General decomposition of the d = 9 operator ūūddēē for topology I. Here we do not specify the
chirality of outer fermions, and the mediators are given with the charge of electromagnetic U(1)em
and that of colour SU(3)c. The symbols S and S ′ denote scalars, Vρ and V ′

ρ vectors, and ψ a
fermion. The column “Long Range?” indicates if and which type of long-range diagram in Fig. 2
can be constructed, apart from the short-range diagram (d). The column “Models/Refs./Comments”
lists possible models, discussed previously in the literature, and references, and comments on possible
limitations for the mediators. Here “RPV” stands for R-parity violating SUSY models, and “LQ”
for “leptoquarks”.

8



Mediator (Qem, Qcolour)
# Decomposition S or Vρ S ′ or V ′

ρ S ′′ or V ′′
ρ Models/Refs./Comments

1 (ūd)(ūd)(ēē) (+1, 1) (+1, 1) (−2, 1) Addl. triplet scalar [69]
LR-symmetric models [40, 42]

(+1, 8) (+1, 8) (−2, 1)
2 (ūd)(ūē)(ēd) (+1, 1) (−1/3, 3) (−2/3, 3)

(+1, 8) (−1/3, 3) (−2/3, 3)
3 (ūū)(dd)(ēē) (+4/3, 3) (+2/3, 3) (−2, 1) only with Vρ and V

′
ρ

(+4/3, 6) (+2/3, 6) (−2, 1)
4 (ūū)(ēd)(ēd) (+4/3, 3) (−2/3, 3) (−2/3, 3) only with Vρ

(+4/3, 6) (−2/3, 3) (−2/3, 3)
5 (ūē)(ūē)(dd) (−1/3, 3) (−1/3, 3) (+2/3, 3) only with V ′′

ρ

(−1/3, 3) (−1/3, 3) (+2/3, 6) [70, 71]

Table 4: Decomposition of topology II. As in Tab 3, we do only give electric and colour charges of
the internal bosons here. The mediators can be either scalars (S, S ′, S ′′) or vectors (Vρ, V

′
ρ, V

′′
ρ ).

All listed possibilities give short-range contributions.

cases listed, which require that the internal fermion has a fractional electric charge. As far as we
know, none of them have been discussed in the literature before. All of these new “models” not
only require fractionally charged fermions, but also exotic bosons. The latter can be doubly-charged
bileptons [67], diquarks, or leptoquarks [68].

The 0νββ decay process violates lepton number L. We can easily identify the different possibilities
for LNV from Tab. 3 (cf., Fig. 3, left panel). If the internal fermion is neutral, it can have a Majorana
mass and a mass insertion leads then to ∆(L) = 2. This is the case, for example, in the mass
mechanism and in the WR −N −WR diagram of LR-symmetric models. The other possibility is to
have LNV vertices. For the cases with a doubly charged bilepton S ′(+2, 1), for example, one can
have one ∆(L) = 2 vertex. And, finally, it is possible to have models with two ∆(L) = 1 vertices.

An example is trilinear RPV SUSY, e.g., from the superpotential W = λ′L̂Q̂D̂c.

Most of the new models we find are of the short-range type and thus should be testable at the
LHC. We will discuss one particular example in greater detail in Sec. 4.

3.2 Decomposition of topology II

There are a total of five (again times two due to colour) possibilities to assign the outer fermions to
T-II. These are listed together with the electric and colour charges of the possible mediators in Tab. 4.
As before, this table is valid for both V and S intermediate states and we do not specify the chiralities
of the outer fermions here. In the appendix, we give a table for the operator decompositions with
fixed chiralities.

Much fewer models with T-II have been studied in the literature than for T-I. In fact, we have
found only the cases T-II-1 and T-II-5 (with a scalar 6̄) have been considered previously. The best
known is the case T-II-1 with bosons transforming as V (+1, 1). This diagram can be produced by
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adding an SU(2)L triplet scalar to the SM particle content [69] (case SSS).8 The same diagram can
occur in LR-symmetric models [40] (as VVS). In this case, the outer fermions are again all right-
handed, and this possibility has been considered in [42]. Note that in all these models, there is always
an additional contribution from T-I, which is not necessarily present for all T-II models. In the case
of the LR-symmetric model, T-II can be comparable with T-1, but can never completely dominate
the contributions to 0νββ decay.

Finally there is the recent paper [70], in which the author constructs a model with the particle
content corresponding to the scalars in T-II-5 (with 6̄ representation under SU(3)c). In this model
neutrinos are pseudo-Dirac, such that T-II-5 gives the dominant contribution to 0νββ decay. This
is the only example in the literature, which we are aware of that a T-II contribution dominates the
0νββ decay amplitude.9 Note, however, that our Tab. 4 allows to construct a number of additional
models with this property.

4 An example for short-range 0νββ decay, and its test at

the LHC

As mentioned above, one expects that exotic models with LNV, which lead to short-range con-
tributions for 0νββ decay, yield testable phenomenology at the LHC. The classical example is the
LR-symmetric model, and there is also a recent paper that has made a study for trilinear RPV SUSY
and 0νββ decay [74]. In this section we will discuss basic LHC phenomenology of one particular ex-
ample in our Tab. 3, based on the decomposition T-I-4-ii-a. We have chosen this particular case
basically for two reasons: (i) it belongs to the class of models, which have not been studied in the
literature before, and (ii) it leads to richer phenomenology at the LHC than either the LR-symmetric
model or RPV SUSY. By using the different signals which we will discuss in the following, one could
distinguish this model from the other possibilities, such as the LR-symmetric model and RPV SUSY.

For the decomposition T-I-4-ii-a one needs to introduce three new particles to the SM particle
content, which are (a) a diquark, which is either a vector V

4/3
DQ or a scalar S

4/3
DQ, (b) an exotic coloured

(3) vector-like fermion Ψ5/3 with electric charge 5/3, and (c) a leptoquark, which is again either

a vector V
2/3
LQ or a scalar S

2/3
LQ . We will concentrate on the case where both the diquark and the

leptoquark are scalars. The vector case is qualitatively similar from the point of view of LHC
phenomenology.10 The 0νββ decay is generated through the diagram shown in Fig. 4.

So far, the chiralities of the outer fermions are not determined. When taking into account
the fact that the effective operator should be a component of a SM gauge invariant operator, the
number of the choices is limited. There are three possibilities of the SM gauge invariant operators

8However, it was shown in [7, 72, 73] that this contribution is always sub-dominant.
9A similar diagram can be found in Fig. 2 of [71]. The model therein was constructed to describe neutrino mass

at two-loop order. Note that neutrino mass may be obtained at a lower than 4-loop order (as postulated by the black
box diagram), in a specific model. That, however, necessarily requires that the effective operator can be promoted
to an SU(2) invariant operator with one or two lepton doublets, which cannot be done for every model. The SU(2)
invariant effective operator with one lepton doublet and a right-handed electron may induce neutrino mass at the
3-loop level (as our example in Sec. 4), and the operator with two lepton doublets may induce neutrino mass at the
2-loop level. If one assumes that the SM gauge invariant effective operator is constrained by the current limit of 0νββ
decay, the 2- and 3-loop-induced neutrino masses via the associated operators SU(2)L should be sub-dominant.

10Of course, some numerical factors are different in the vector cases from the scalar case.
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uR

uR
dL eR

dR

eL

S
4/3
DQ

Ψ5/3
S
2/3
LQ

Figure 4: The diagram of 0νββ for the example T-I-4-ii-a with two scalar mediators (SFS type
diagram).

that can contain the T-I-4-ii-a operator,11 which are (QQ)(dR)(L)(LdR), (uRuR)(Q)(eR)(LdR), and
(uRuR)(dR)(L)(eRQ). We note in passing that they correspond to the effective operators (#11,
#20, and also #20 respectively) shown in [45]. Here, we take the second one for our example, and
consequently the chiralities of the outer fermions are fixed as (uRuR)(dL)(eR)(eLdR). Note that in
this example, neutrino mass can be generated at the 3-loop order, with one effective vertex given by
the 0νββ operator. This contribution should be negligible by similar arguments as in Ref. [11].

Diquarks at the LHC have been studied recently in [75]. Among them, the relevant one for our

0νββ example is a scalar colour-sextet (6) diquark S
+4/3
DQ (6, 1)+4/3 which is an SU(2)L singlet (1)

and has +4/3 U(1)Y -hypercharge.
12 It interacts with two right-handed up-quarks as

LDQ =
[
λαβDQ(uαR)

Ia(T6̄)
X
IJ(uβR

c)Ja (S
+4/3
DQ )X + h.c.

]
−m2

DQ(S
−4/3
DQ )X(S

+4/3
DQ )X . (6)

where the indices α and β indicate the generations of the up-type quarks, I and J label the funda-
mental representations (3 and 3̄) of SU(3)c (I, J = 1, 2, 3), and a is the index for the 2-component
left-handed (=conjugate of right-handed) spinor. Here, the matrices (T6̄)

X
IJ (X =1-6) provides SU(3)c

Clebsch-Gordan coefficients, which are symmetric under the exchange of I and J . The concrete form
of T6̄ is given in App. A.2. If the diquark is chosen as a colour 3̄ (i.e., ǫIJK(uαR)

I(uβR
c)J(S

+4/3
DQ )K)

instead of a 6, the coefficient λαβDQ must be antisymmetric in the indices, due to the transformation
properties of the 3 that is made from an antisymmetric combination in colour indices of two 3̄ (two
ū). For 0νββ decay, only the choice α = β = u is relevant. Thus, the scalar diquark SDQ must be a
colour 6 representation.13

A diquark with couplings as in Eq. (6) will be copiously produced at the LHC. In [75], the
authors evaluated the production cross sections σ, which are as large as σ/(λ2DQBRjj) = 400 (1) pb
for mDQ = 1 (3) TeV. Here, BRjj is the branching ratio for the diquark decaying to two jets. Due
to the s-channel resonance in the cross section, σ scales approximately as σ ∝ λ2DQ (in the narrow
width approximation). Recently, the CMS [76] and ATLAS [77, 78] collaborations have searched for
resonances in the dijet mass spectrum and upper limits on σ × BRjj × A have been derived as a

11The chiralities of the outer fermions on the vertices v2 and v3 are chosen so that the mass term in the propagator
of the fermion mediator Ψ5/3 is picked out. See appendix for more details.

12Here we use the notation (SU(3)c, SU(2)L)U(1)Y from the appendix.
13This is strictly true only for unmixed (valence) quarks. Note also that for vector diquarks in principle both, the

6s and the 3̄a can contribute.
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function of the invariant dijet mass. Here, A is the acceptance, which is estimated to be A ≃ 0.6
for isotropic decays [76]. The experimental upper limits range from σ × BRjj ×A ≃ 1 (0.01) pb for
mDQ = 1 (3) TeV. These limits get stronger for larger values of mDQ, because of the larger QCD
background for smaller invariant masses. These limits, together with the theoretical calculation of
the cross sections [75], imply upper limits on λuuDQ of the order of roughly λuuDQ

<∼ 0.2 over the whole
mass range explored (mDQ ∼ (1− 4) TeV).

Note that a scalar diquark has been proposed [79–81] as a possible explanation for the unexpect-
edly larger tt̄ asymmetry observed at the Tevatron. However, these papers consider only a scalar
3a, which will not contribute to 0νββ decay, as explained above. A 6̄s would probably be able to
give a similar enhancement, but a recent paper by the ATLAS collaboration claims that most of the
parameter space of [80] is now ruled out by LHC data [82]. We will therefore not enter into a detailed
discussion of this possibility.

The mediator Ψ5/3 is a heavy vector-like coloured (3) fermion, aka Vector-like Quark (VLQ).
The LHC phenomenology of such states has been recently studied by a number of authors [83–86].
From the SM gauge invariance, this exotic fermion should be a component field of an SU(2)L doublet
Ψ = (Ψ5/3,Ψ2/3)T with hypercharge 7/6. Current limits from pair production have been summarised
recently in [85]. For the Ψ5/3 the ATLAS search for pair-produced heavy quarks decaying to WqWq
gives mΨ5/3 >∼ 350 GeV [85]. Note that vector-like quarks have received a lot of attention recently
[87–99] as a possibility to explain the larger than expected event rate in h → γγ observed by the
ATLAS [100] and CMS [101] collaborations.

The other scalar mediator S
2/3
LQ , which interacts with dR and L, can be identified as so-called a

first generation Leptoquark (LQ) which interacts only with the first generation fermions and it comes

from the SU(2)L doublet with hypercharge, 1/6, SLQ = (S
2/3
LQ , S

−1/3
LQ )T [68]. The Lagrangian relevant

for generating the 0νββ decay diagram of Fig. 4 contains

LLQ =
[
λLQ(L)

i
ȧ(dR)

ȧ
I(iτ

2)ij(S
∗
LQ)

Ij + h.c.
]
−m2

LQ(S
†
LQ)

Ii(SLQ)Ii , (7)

where (iτ 2) is an antisymmetric tensor for the SU(2)L indices. At the LHC, the first generation
LQs are studied through pair production via the strong interaction. The produced LQs can then
decay into eq or νq pairs through the interaction shown in Eq. (7). This allows to derive absolute
bounds on the LQ mass (nearly independent of λLQ). The current bounds [102] from ATLAS are
mLQ > 660GeV. The CMS searches for the LQ give the limits which range from 830 GeV to 640
GeV for first generation LQs with Breq = 1 to Breq = 0.5. The HERA experiment [103] has also
searched for LQs, but via single LQ production. This leads to limits in the parameter plane λLQ-mLQ.
However, practically all the HERA-excluded combinations are now superseded by the recent LHC
limits.

For the diagram generating 0νββ shown in Fig. 4, two more interaction terms among the different
mediators are needed:

LΨ =λαDQΨ(Qα
c)aIi(T6)

IJ
X (iτ 2)ij(ΨL)Jja(S

−4/3
DQ )X + λLQΨ(ΨR)

Iia(eR
c)a(SLQ)Ii + h.c. (8)

Note that Eq. (8), together with the previously specified pieces of Lagrangians, necessarily violates
lepton (but not baryon) number, as is necessary for the generation of a finite 0νββ decay amplitude.
No constraints on λDQΨ and λLQΨ exist in the literature up to now.
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After integrating out all the heavy fields, the LNV d = 9 effective Lagrangian for 0νββ decay is
given as

Leff =
λDQλDQΨλLQΨλLQ
m2

DQmΨm2
LQ

[
(uR)

I′a(T6̄)
X
I′J ′(uR

c)J
′

a

] [
(dL

c)bI(T6)
IJ
X (eR

c)b

] [
(eL)ċ(dR)

ċ
J

]
+ h.c. (9)

As demonstrated in App. A.2, we arrive at a linear combination of the basis operators — the effective
current description of [37] — after Fierz and the colour-index transformation, which is,

Leff =
λDQλDQΨλLQΨλLQ
m2

DQmΨm2
LQ

1

32
[i(O4)LR − (O5)LR] ≡ C4 (O4)LR − C5 (O5)LR (10)

with correspondingly defined coefficients Ci (∝ Λ−5) and |C4| = |C5| in this particular model. The
basis operators are defined with the chirality indices L and R as described in App. A.1, cf., Eqs. (18)
and (19). Note that the transition from Eq. (9) to the basis in Eq. (10) can be directly read off from
our tables in App. A.3. This example corresponds to the second line of T1-4-ii-2 in Tab. 9, where
Eq. (10) can be read off from the last column. Therefore, this example serves to illustrate how to
use the tables in our appendix.

The general formula to calculate the half-life time is shown in [37], cf., Eq. (20) in App. A.1, and
is given with the normalised (mass dimensionless) coefficients ǫi ≡ 2mPCi/G2

F . The relevant part is

(T 0νββ
1/2 )−1 = G2

∣∣∣∣∣

5∑

i=4

ǫiMi

∣∣∣∣∣

2

(11)

in this example. Here G2 [yr
−1] is a phase space factor, andMi are the nuclear matrix element parts

of the total amplitude, which are normalised to be mass dimensionless.

The half-life Eq. (11) is dominated by the ǫ4 contribution, because of M4 ≫ M5.
14 Using the

experimental bounds to ǫ4 listed in Tab. 2, we obtain the bounds for the masses of the heavy particles
as a function of the couplings involved:

|C4| =
|λDQλDQΨλLQΨλLQ|

m2
DQmΨm2

LQ

1

32
=

G2
F

2mP
ǫ4 <

G2
F

2mP
1.2 · 10−8 (12)

which, assuming that all masses are of order Λ, leads to

Λ & 2.0λ
4
5

eff TeV, (13)

where λeff ≡ (λDQλDQΨλLQΨλLQ)
(1/4).

While the individual masses involved in these expressions have been constrained from the searches
at colliders, which were discussed above, the most direct test of this model — a signal directly related
to the diagram shown in Fig. 4 — can be done at the LHC in the following way. In the case where
mLQ < mΨ < mDQ, once a diquark S

4/3
DQ is produced, it will decay to the VLQ Ψ5/3 with a branching

ratio of roughly (neglecting kinematical factors) Br ∼ Γ(SDQ→ΨQ)

Γ(SDQ→ΨQ)+Γ(SDQ→uRuR)
∼ λ2

DQΨ

λ2
DQΨ

+λ2
DQ

, i.e.,

14In fact, given our tables in the appendix, one does not need to rely on the assumption of only one dominating NME
since the coefficients are explicitely given, and one can directly translate the half-life time into the model constraints
for a specific model. In this specific example, we use this dominance for the sake of simplicity.
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Br ∼ 1/2 for λDQΨ = λDQ, and the VLQ Ψ will then further decay to the LQ S
2/3
LQ plus a lepton.

This decay channel will usually dominate over the 3-body decay Ψ5/3 → 3j via an off-shell diquark.
The total signal for this decay chain is then e+e+jj.15 This signal is the same as the process
searched for by the ATLAS [43] and the CMS collaborations [44] in the context of the LR-symmetric
model, and thus the result of the search can already be used to derive limits on the parameter
space of the mediator fields, DQ, VLQ, and LQ. The upper limit on this channel reported in [44]
is around 2.5 fb with an assumption of mWR

= 3 TeV in the LR symmetric model. This bound
corresponds then to roughly λDQΨ = λDQ <∼ 0.07 for mDQ = 3 TeV (with an assumption on the mass
difference mDQ − mΨ >∼ 100 GeV due to the experimental cuts). While this limit provides already
some interesting constraints on this example “model” shown in Fig. 4, a more detailed analysis is
required, before it is ruled out as the dominant mechanism of 0νββ decay process. We expect, of
course, that much more stringent limits will be provided by the forth-coming LHC run with

√
s = 14

TeV.

5 Summary and conclusions

We have systematically decomposed the 0νββ operator with mass dimension nine (d = 9), resulting
in a tree-level complete list of possible contributions to 0νββ decay. Our main results are summarised
in Tables 3 and 4.

Our list encompasses all previously discussed contributions to 0νββ decay and, more interestingly,
demonstrates that actually most cases have not been discussed yet. The new options typically require
not only fractionally charged fermions, but also exotic bosons. The latter can be doubly-charged
bileptons, diquarks, or leptoquarks. For topology II (cf., right panel of Fig. 3), we have also found
a possibility with integer charges and scalars (or vectors) only. In fact, almost all of the topology II
possibilities have not been discussed in the literature before as leading contribution to 0νββ decay.

The d = 9 0νββ decay operator is genuinely suppressed by 1/Λ5 if the lightest mediator is
heavier than a few GeV. On the other hand, the 0νββ decay operator mediated by a light neutrino
with right-chiral interactions (long-range contribution) is weaker suppressed, and therefore, the new
physics scale Λ could be quite high, unreachable in current collider experiments. 0νββ decay itself
does very likely give the strongest constraint on such mediators. In the short-range case, Λ points
towards the TeV scale, if a signal is detected at the next generation 0νββ decay experiments, which
means that the mediators leading to 0νββ decay may be constrained at the LHC. We have therefore
focused on the short-range case for a more detailed analysis.

In order to translate the bound on the half-life T 0νββ
1/2 into a bound for the masses and couplings

of a particular model, the Lorentz structure of the effective 0νββ decay operator is important, since
each model will be sensitive to a distinct combination of Nuclear Matrix Elements (NME). For the
short-range case mediated by scalars and a fermion, we have therefore expanded all models in terms
of the chiralities of their effective low-energy operators. The results are given in tabular form, and
can be used to directly translate new bounds or re-computed NMEs into a mass and coupling limit
for a specific model. From our lists and the recipes discussed in the appendix, also the corresponding
vector cases can be derived in a straightforward manner.

15 If mΨ < mLQ both the 3j and the eej final states of the Ψ decay will occur.
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We have also worked out one example which can be tested at the LHC in greater detail. This
example requires a diquark, an exotic colour-triplet vector-like fermion with electric charge 5/3, and a
leptoquark. While the individual mediators can be produced and tested at the LHC, not all couplings
needed for 0νββ decay are directly accessible in all kinematically possible configurations. However,
in case the exotic fermion is lighter than the diquark, the 0νββ decay diagram can be directly tested
by processes with two like-sign leptons and two jets in the final state. While our example only serves
as a prototype, we expect that a more systematic study of all short-range 0νββ decay contributions
for the LHC is feasible.

In conclusion, a discovery of 0νββ guarantees physics beyond the Standard Model. Whether
this new physics is due to the d = 5 Weinberg operator which implies heavy mediators, such as
heavy right-handed neutrinos in the famous (type I) seesaw mechanism, or some other mechanism,
is an open question. There are many different possibilities to mediate 0νββ decay without Majorana
neutrinos, even at tree level. We have discussed that many of these options have in common that the
mediators should be found at the LHC, or that LHC will provide very stringent constraints. Finally,
the most interesting case may be that 0νββ decay is discovered in conflict with neutrino mass bounds
from tritium endpoint experiments [104] or cosmology [33–35] which would point towards one of our
exotic mechanisms.
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A From effective Lagrangians to the decay rate

Our general decomposition of the 0νββ decay operator is given in terms of the quark (and the
lepton) currents. However, 0νββ is a low-energy process in which we must treat hadronic currents —
neutrons are converted into protons in a nucleus. Therefore, the derivation of the decay rate for any
model leading to an effective Lagrangian of the form Eqs. (2) and (5), involves a number of steps.
However, since this derivation has been studied several times in the literature, we summarise only
the relevant definitions necessary for making contact with the general Lorentz-invariant description
of [37, 38] in this appendix.
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A.1 Decay rate

Although we have already given the effective Lagrangian for short-range contributions in Eq. (5),
here we re-define them with the chiralities:

Leff =
G2
F

2
m−1
P

[
3∑

i=1

ǫ
{XY }Z
i (Oi){XY }Z +

5∑

i=4

ǫXYi (Oi)XY
]
, (14)

where the effective operators are described as

(O1){XY }Z ≡JXJY jZ , (15)

(O2){XY }Z ≡(JX)µν(JY )µνjZ , (16)

(O3){XY }Z ≡(JX)µ(JY )µjZ , (17)

(O4)XY ≡(JX)µν(JY )µ(j)ν , (18)

(O5)XY ≡JX(JY )µ(j)µ. (19)

The following formula directly relates the inverse half-life with the effective Lagrangian Eq. (14): 16

(
T 0νββ
1/2

)−1

=G1

∣∣∣∣∣

3∑

i=1

ǫiMi

∣∣∣∣∣

2

+G2

∣∣∣∣∣

5∑

i=4

ǫiMi

∣∣∣∣∣

2

+G3Re

[(
3∑

i=1

ǫiMi

)(
5∑

i=4

ǫiMi

)∗]
, (20)

Eq. (20) contains the product of three distinct factors, Gi,Mi and ǫi. Here, Gi∈{1,2,3} are the leptonic
phase space integrals, which can be calculated accurately, e.g., [50]. The nuclear Matrix Elements
(NME)Mi∈{1-5} are different for different short-range contributions ǫi∈{1-5}, detailed definitions can
be found in [37], numerical values are given in [6, 37]. The contribution from the mass mechanism
can be expressed as

(
T 0νββ
1/2

)−1

=G1

∣∣∣∣
〈mν〉
me

[
MGT −

g2V
g2A
MF

]∣∣∣∣
2

, (21)

whereMF andMGT are the standard Fermi and Gamow-Teller transition matrix elements, gV and
gA are the vector and axial-vector couplings of the hadron current, and me is the mass of electron.17

Given the numerical values of Gi andMi, once the combination of ǫi’s for a given model have been
identified (see the tables below), the derivation of the limits from T 0νββ

1/2 becomes straightforward.

A.2 Fierz and colour-index transformations

The general effective Lagrangians given in Eqs. (2) and (5) are described with the standard form J
of the quark current, which (i) is a singlet under the colour SU(3)c and (ii) takes the bi-linear form
(ūΓd) in terms of the Lorentz structure, where Γ ∈ {1 ± γ5, γµ(1 ± γ5), γµν(1 ± γ5)}. It is suitable

16 The formulae for the long-range contributions are given in [38]. Note that, when one decomposes the amplitudes
into a long-range and a short range parts, one assumes implicitly that there is no new physics with a mass scale similar
to the nuclear Fermi scale, i.e., O(100) MeV.

17The NME for the mass mechanism have been calculated in a number of papers in the literature. Unfortunately,
however, some of the NME of the general decay rate have so far been calculated only in [6, 37, 38].

16



for the calculation of the hadron transition amplitudes of the type 〈P (p)|(ūΓd)|N(p′)〉, to describe
the conversion of neutrons to protons. On the other hand, the decomposed effective operators which
are listed in Tabs. 3 and 4 do not take this standard form (except for T-I-1 and T-II-1). In order to
bring them to the standard form shown as the effective Lagrangian Eq. (5), we need to transform
the Lorentz and the colour indices in the effective operators.

First, we discuss the treatment of colour indices. In the operator decomposition, we introduce
the antisymmetric tensors ǫIJK and ǫIJK (I, J,K = 1-3), the symmetric matrices (T6)

IJ
X and (T6̄)

X
IJ

(X = 1-6) under the exchange of I and J , and the Gell-Mann matrices (λA)I
J
(A = 1-8), where the

lower I-index is for 3 representation (dI), while the upper one for 3̄ (ūI). Here, the matrices T6 and
T6̄ are explicitly defined as

(T6)
IJ
1 = (T6̄)

1
IJ =



1

0
0


 , (T6)

IJ
2 = (T6̄)

2
IJ =




0 1/
√
2

1/
√
2 0

0


 ,

(T6)
IJ
3 = (T6̄)

3
IJ =



0

1
0


 , (T6)

IJ
4 = (T6̄)

4
IJ =




0 1/
√
2

0

1/
√
2 0


 ,

(T6)
IJ
5 = (T6̄)

5
IJ =



0

0 1/
√
2

1/
√
2 0


 , (T6)

IJ
6 = (T6̄)

6
IJ =



0

0
1


 . (22)

The transformation rules relevant to our work are summarised as

ǫIJKǫKI′J ′ =δII′δ
J
J ′ − δJI′δIJ ′, (23)

(T6)
IJ
X (T6̄)

X
I′J ′ =

1

2

[
δII′δ

J
J ′ + δJI′δ

I
J ′

]
, (24)

(λA)I′
I
(λA)J ′

J
=− 2

3
δII′δ

J
J ′ + 2δJI′δ

I
J ′ . (25)

Next, we transform the spinor indices. General formulas for Fierz transformations can be found
in the literature in many references, see for example [105] for 2-component spinor representations.
In some decompositions, we must Fierz-transform all the six fermions, to which the well-known
transformation rules for four fermions are not applicable. However, after appropriate successive
transformations with the formulae shown in [105], one can reach the standard form.

Here, we demonstrate the procedure of the operator projection with an operator as an example,
which is we saw in Sec. 4, (uRuR)(dL)(eR)(eLdR). Writing down the operator again with all the
indices explicitly, we have

Oexample ≡
[
(uR)

I′a(T6̄)
X
I′J ′(uR

c)J
′

a

] [
(dL

c)bI(T6)
IJ
X (eR

c)b

] [
(eL)ċ(dR)

ċ
J

]
. (26)

Applying Eq. (24), we obtain the following colour-singlet ūd combinations, that however do not form
standard quark currents yet:

Oexample =
1

2

[
δII′δ

J
J ′ + δJI′δ

I
J ′

]
(uR)

I′a(uR
c)J

′

a (dL
c)bI(eR

c)b(eL)ċ(dR)
ċ
J

=(uR)
Ia(dL

c)bI(uR
c)Ja (dR)

ċ
J(eL)ċ(eR

c)b. (27)
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In order to obtain the standard form, we transform also the spinor indices. The formulae that are
necessary for this transformation will be shown later.

(RHS) of Eq. (27)

=δdb δ
ċ
ḟ
(uR)

Ia(dL
c)bI(uR

c)Ja (dR)
ḟ
J(eL)ċ(eR

c)d

=− 1

32

[
JL(JR)

µ(j)µ +
1

i
(JL)

µν(JR)µ(j)ν

]
. (28)

Here, Fierz transformations are carried out in the 2-component representation (as in [105]), which
is related to the 4-component representation in the following manner. We take so-called chiral
representation for a 4-component spinor, i.e., the Lorentz vector matrices σµ ≡ (1, σa) and σµ ≡
(1,−σa) for 2-component spinors are introduced, which are given as the components of the γµ matrices
as

γµ =

(
(σµ)aḃ

(σµ)ȧb

)
. (29)

The Lorentz tensor matrices σµν for 2-component spinors, which appear in Eq. (28), are defined with
σµ and σµ as18

(σµν)a
b ≡1

4

[
(σµ)aȧ(σ

ν)ȧb − (σν)aȧ(σ
µ)ȧb
]
, (30)

(σµν)ȧḃ ≡
1

4

[
(σµ)ȧa(σν)aḃ − (σν)ȧa(σµ)aḃ

]
, (31)

which are related to the matrices γµν for 4-component spinors as

γµν = 2i

(
(σµν)a

b

(σµν)ȧḃ

)
. (32)

The relations between the currents in the 2-component representation and those (defined at Eq. (3))
in the 4-component representation are explicitly described as

(uR)
Ia(dL)Ia =

1

2
JL, (33)

(uR)
Ia(σµ)aḃ(dR)

ḃ
I =

1

2
(JR)

µ, (34)

(uR)
Ia(σµν)a

b(dL)Ib =
1

4i
(JL)

µν , (35)

(eL)ȧ(σ
µ)ȧb(eR

c)b =
1

2
(jL)

µ. (36)

In the steps of the transformation shown in Eq. (28), we applied the following formulae of Fierz-
transformation,

δdaδ
ċ
ḃ
=
1

2
(σµ)aḃ(σ

µ)ċd, (37)

ǫacǫ
bd =− 1

2

[
δbaδ

d
c + (σρσ)a

b(σρσ)c
d
]
, (38)

18Note that the definition of 2-component tensor matrices here is different from [105] by an imaginary unit i.
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and the nature of the sigma matrices,

(σµν)a
b(σρ)bḃ =

1

2
[(σµ)aḃg

νρ − (σν)aḃg
µρ + iǫµνρσ(σσ)aḃ] , (39)

iǫµνρσ(σρσ)a
b =− 2(σµν)a

b. (40)

A.3 Full decompositions for the short-range scalar-mediated topology I

In case of topology I the intermediate states contain a fermion, leading to a different treatment in
case of long-range and short-range contributions. For the long-range part of the amplitude, in order
to derive interesting constraints, one has to pick out the neutrino momentum qν from the propagator,
because of qν ≫ mν . On the other hand, in the short-range case, the relevant amplitude must take
the mass part mψ in the propagator of the fermion mediator ψ, because of qψ ≪ mψ. Thus, not
all possibilities to assign chiralities of the six outer fermions lead to interesting models. When the
decomposition is symbolically written as (ab)(c)(d)(ef) where each parenthesis corresponds to each
vertex vi in the left panel of Fig. 3, i.e., (ab) corresponds to the outer fermions on the vertex v1,
and (c) does to v2, and so on, in order to pick out mψ from the propagator, only the combinations
(cLc)(dL) and (cRc)(dR) need to be considered. Note, that aR ≡ aPL. Since we concentrate on the
SFS case, in which both the mediators between the vertices v1 and v2 and that between v3 and
v4 are scalars, the chirality structures of the outer fermions on v1 and v4 are also restricted to be
(ab) ∈ {(aLcbL), (aRcbR)} and (ef) ∈ {(eLcfL), (eRcfR)}. At this stage, there are eight choices for the
combinations of chiralities of the six outer fermions. However, some of them are not generated from
the d = 9 SM gauge invariant operators which are listed in [45,46]. We exclude the chirality choices
which require an additional Higgs doublet(s) (i.e., those originated from the operators of d > 9), and
list all the possibilities inspired from the d = 9 SM gauge invariant operators.

The results are summarised in Tabs. 5-9. The id-numbers indicated in the column “#” correspond
to those in Tab. 3. One can find the chirality choices explicitly in the column “Operators”. The
id-numbers in the column “BL” tells the correspondence to the d = 9 SM gauge invariant operators
listed by Babu and Leung [45]. The SM charges of all possible mediators are fully identified in the
column “Mediators”.19 The basis operators, cf. Eq. (5), resulting after Fierz and the colour-index
transformations are given in the column “Basis op.”. Some of the decompositions appear necessarily
with different ones at the same time. These associated decompositions are listed in the column
“Appears with”.

The use and application of our tables is illustrated with the example in Sec. 4, see discussion after
Eq. (9). Once a specific model is chosen, the basis operators with the corresponding coefficients can
be directly read off from the table. These basis operators are directly related with the NMEs, i.e.,
the table lists which NMEs specific models are testing. As a consequence, the lifetime bounds can
be translated into constraints on masses and couplings for a specific model — as it is illustrated in
our example.
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Mediators (SU(3)c, SU(2)L)U(1)Y

# Operators BL S ψ S′ Basis op.

1-i (uLdR)(eL)(eL)(uLdR) #11 (1,2)+1/2 (1,1)0 (1,2)−1/2
1
8(O1){RR}R

(1,2)+1/2 (1,3)0 (1,2)−1/2 s.a.a

(8,2)+1/2 (8,1)0 (8,2)−1/2 − 5
24(O1){RR}R − 1

32 (O2){RR}R
(8,2)+1/2 (8,3)0 (8,2)−1/2 s.a.a

(uLdR)(eL)(eL)(uRdL) #14 (1,2)+1/2 (1,1)0 (1,2)−1/2
1
8 (O1){LR}R

(1,2)+1/2 (1,3)0 (1,2)−1/2 s.a.a

(8,2)+1/2 (8,1)0 (8,2)−1/2 − 1
12(O1){LR}R −1

8(O3){LR}R
(8,2)+1/2 (8,3)0 (8,2)−1/2 s.a.a

(uRdL)(eL)(eL)(uRdL) #12 (1,2)+1/2 (1,1)0 (1,2)−1/2
1
8(O1){LL}R

(1,2)+1/2 (1,3)0 (1,2)−1/2 s.a.a

(8,2)+1/2 (8,1)0 (8,2)−1/2 − 5
24(O1){LL}R − 1

32 (O2){LL}R
(8,2)+1/2 (8,3)0 (8,2)−1/2 s.a.a

1-ii-a (uLdR)(uL)(dR)(eLeL) #11 (1,2)+1/2 (3,3)+2/3 (1,3)+1
1
8(O1){RR}R

(8,2)+1/2 (3,3)+2/3 (1,3)+1 − 5
24(O1){RR}R − 1

32 (O2){RR}R
(uLdR)(uR)(dL)(eLeL) #14 (1,2)+1/2 (3,2)+7/6 (1,3)+1

1
8 (O1){LR}R

(8,2)+1/2 (3,2)+7/6 (1,3)+1 − 1
12(O1){LR}R −1

8(O3){LR}R
(uRdL)(uL)(dR)(eLeL) #14 (1,2)+1/2 (3,3)+2/3 (1,3)+1

1
8 (O1){LR}R

(8,2)+1/2 (3,3)+2/3 (1,3)+1 − 1
12(O1){LR}R −1

8(O3){LR}R
(uRdL)(uR)(dL)(eLeL) #12 (1,2)+1/2 (3,2)+7/6 (1,3)+1

1
8(O1){LL}R

(8,2)+1/2 (3,2)+7/6 (1,3)+1 − 5
24(O1){LL}R − 1

32 (O2){LL}R
1-ii-b (uLdR)(dL)(uR)(eLeL) #14 (1,2)+1/2 (3,3)+1/3 (1,3)+1

1
8 (O1){LR}R

(8,2)+1/2 (3,3)+1/3 (1,3)+1 − 1
12(O1){LR}R −1

8(O3){LR}R
(uLdR)(dR)(uL)(eLeL) #11 (1,2)+1/2 (3,2)+5/6 (1,3)+1

1
8(O1){RR}R

(8,2)+1/2 (3,2)+5/6 (1,3)+1 − 5
24(O1){RR}R − 1

32 (O2){RR}R
(uRdL)(dL)(uR)(eLeL) #12 (1,2)+1/2 (3,3)+1/3 (1,3)+1

1
8(O1){LL}R

(8,2)+1/2 (3,3)+1/3 (1,3)+1 − 5
24(O1){LL}R − 1

32 (O2){LL}R
(uRdL)(dR)(uL)(eLeL) #14 (1,2)+1/2 (3,2)+5/6 (1,3)+1

1
8 (O1){LR}R

(8,2)+1/2 (3,2)+5/6 (1,3)+1 − 1
12(O1){LR}R −1

8(O3){LR}R

Table 5: The results of decomposition and projection of the operators categorised to #1. We also
show the ID-number of the lepton number violating operators listed by Babu and Leung (BL) [45] (see
also Ref. [46]). For T-I-i-1, there are only three independent choices of chiralities. Here, we assume
that the effective operators are originated from the SM gauge (SU(3)c × SU(2)L × U(1)Y ) invariant
d = 9 operators. Note that the scalar mediators S and S ′ of #1-i-(2) take interactions with different
combinations of quarks, although their SM charges are the same. The abbreviation “s.a.a” in “Basis
op.” column means “same as above”. The hypercharge Y is defined as Y ≡ Qem − I3.
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Mediators (SU(3)c, SU(2)L)U(1)Y Appears

# Operators BL S ψ S′ Basis op. with

2-i-a (uLdR)(dR)(eL)(uLeL) #11 (1,2)+1/2 (3,2)+5/6 (3,1)+1/3 − 1
16(O1){RR}R

(1,2)+1/2 (3,2)+5/6 (3,3)+1/3 s.a.a

(8,2)+1/2 (3,2)+5/6 (3,1)+1/3
5
48(O1){RR}R
+ 1

64(O2){RR}R
(8,2)+1/2 (3,2)+5/6 (3,3)+1/3 s.a.a

(uLdR)(dR)(eL)(uReR) #19 (1,2)+1/2 (3,2)+5/6 (3,1)+1/3
1
16(O5)RR

(8,2)+1/2 (3,2)+5/6 (3,1)+1/3 − 1
16i(O4)RR
− 5

48(O5)RR
(uRdL)(dR)(eL)(uLeL) #14 (1,2)+1/2 (3,2)+5/6 (3,1)+1/3 − 1

16(O1){LR}R
(1,2)+1/2 (3,2)+5/6 (3,3)+1/3 s.a.a

(8,2)+1/2 (3,2)+5/6 (3,1)+1/3
1
24(O1){LR}R
+ 1

16(O3){LR}R
(8,2)+1/2 (3,2)+5/6 (3,3)+1/3 s.a.a

(uRdL)(dR)(eL)(uReR) #20 (1,2)+1/2 (3,2)+5/6 (3,1)+1/3
1
16(O5)LR

(8,2)+1/2 (3,2)+5/6 (3,1)+1/3
1
16i(O4)LR
− 5

48(O5)LR
2-i-b (uLdR)(eL)(dR)(uLeL) #11 (1,2)+1/2 (1,1)0 (3,1)+1/3 − 1

16(O1){RR}R 1-i & 5-i

(1,2)+1/2 (1,3)0 (3,3)+1/3 s.a.a 1-i & 5-i

(8,2)+1/2 (8,1)0 (3,1)+1/3
5
48(O1){RR}R
+ 1

64(O2){RR}R

1-i & 5-i

(8,2)+1/2 (8,3)0 (3,3)+1/3 s.a.a 1-i & 5-i

(uLdR)(eL)(dR)(uReR) #19 (1,2)+1/2 (1,1)0 (3,1)+1/3
1
16(O5){RR} 1-i & 5-i

(8,2)+1/2 (8,1)0 (3,1)+1/3 − 1
16i(O4)RR
− 5

48(O5)RR

1-i & 5-i

(uRdL)(eL)(dR)(uLeL) #14 (1,2)+1/2 (1,1)0 (3,1)+1/3 − 1
16(O1){LR}R 1-i & 5-i

(1,2)+1/2 (1,3)0 (3,3)+1/3 s.a.a 1-i & 5-i

(8,2)+1/2 (8,1)0 (3,1)+1/3
1
24(O1){LR}R
+ 1

16(O3){LR}R

1-i & 5-i

(8,2)+1/2 (8,3)0 (3,3)+1/3 s.a.a 1-i & 5-i

(uRdL)(eL)(dR)(uReR) #20 (1,2)+1/2 (1,1)0 (3,1)+1/3
1
16(O5)LR 1-i & 5-i

(8,2)+1/2 (8,1)0 (3,1)+1/3
1
16i(O4)LR
− 5

48(O5)LR

1-i & 5-i

Table 6: Decomposition #2-i. In case of decomposition #2-i-b, we will have not only #2-i-b, but
also #1-i and #5-i.
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Mediators (SU(3)c, SU(2)L)U(1)Y Appears

# Operators BL S ψ S′ Basis op. with

2-ii-a (uLdR)(uL)(eL)(dReL) #11 (1,2)+1/2 (3,3)+2/3 (3,2)+1/6 − 1
16(O1){RR}R

(8,2)+1/2 (3,3)+2/3 (3,2)+1/6
5
48 (O1){RR}R
+ 1

64(O2){RR}R
(uLdR)(uR)(eR)(dReL) #19 (1,2)+1/2 (3,2)+7/6 (3,2)+1/6

1
16 (O5)RR

(8,2)+1/2 (3,2)+7/6 (3,2)+1/6 − 1
16i(O4)RR
− 5

48(O5)RR
(uRdL)(uL)(eL)(dReL) #14 (1,2)+1/2 (3,3)+2/3 (3,2)+1/6 − 1

16(O1){LR}R
(8,2)+1/2 (3,3)+2/3 (3,2)+1/6

1
24 (O1){LR}R
+ 1

16(O3){LR}R
(uRdL)(uR)(eR)(dReL) #20 (1,2)+1/2 (3,2)+7/6 (3,2)+1/6

1
16 (O5)LR

(8,2)+1/2 (3,2)+7/6 (3,2)+1/6
1
16i(O4)LR
− 5

48(O5)LR
2-ii-b (uLdR)(eL)(uL)(dReL) #11 (1,2)+1/2 (1,1)0 (3,2)+1/6 − 1

16(O1){RR}R 1-i & 4-i

(1,2)+1/2 (1,3)0 (3,2)+1/6 s.a.a 1-i & 4-i

(8,2)+1/2 (8,1)0 (3,2)+1/6
5
48 (O1){RR}R
+ 1

64(O2){RR}R

1-i & 4-i

(8,2)+1/2 (8,3)0 (3,2)+1/6 s.a.a 1-i & 4-i

(uLdR)(eR)(uR)(dReL) #19 (1,2)+1/2 (1,2)−1/2 (3,2)+1/6
1
16 (O5)RR

(8,2)+1/2 (8,2)−1/2 (3,2)+1/6 − 1
16i(O4)RR
− 5

48(O5)RR
(uRdL)(eL)(uL)(dReL) #14 (1,2)+1/2 (1,1)0 (3,2)+1/6 − 1

16(O1){LR}R 1-i & 4-i

(1,2)+1/2 (1,3)0 (3,2)+1/6 s.a.a 1-i & 4-i

(8,2)+1/2 (8,1)0 (3,2)+1/6
1
24 (O1){LR}R
+ 1

16(O3){LR}R

1-i & 4-i

(8,2)+1/2 (8,3)0 (3,2)+1/6 s.a.a 1-i & 4-i

(uRdL)(eR)(uR)(dReL) #20 (1,2)+1/2 (1,2)−1/2 (3,2)+1/6
1
16 (O5)LR

(8,2)+1/2 (8,2)−1/2 (3,2)+1/6
1
16i(O4)LR
− 5

48(O5)LR

Table 7: Decomposition #2-ii. In case of decomposition #2-ii-b, we will have not only #2-ii-b, but
also #1-i and #4-i.
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Mediators (SU(3)c, SU(2)L)U(1)Y Appears

# Operators BL S ψ S′ Basis op. with

2-iii-a (dReL)(uL)(dR)(uLeL) #11 (3,2)−1/6 (1,1)0 (3,1)+1/3
1
32(O1){RR}R
+ 1

128(O2){RR}R

4-i & 5-i

(3,2)−1/6 (1,3)0 (3,3)+1/3 s.a.a 4-i & 5-i

(3,2)−1/6 (8,1)0 (3,1)+1/3 − 7
48(O1){RR}R
− 1

192(O2){RR}R

4-i & 5-i

(3,2)−1/6 (8,3)0 (3,3)+1/3 s.a.a 4-i & 5-i

(dReL)(uL)(dR)(uReR) #19 (3,2)−1/6 (1,1)0 (3,1)+1/3 − 1
32i(O4)RR
− 1

32(O5)RR

4-i & 5-i

(3,2)−1/6 (8,1)0 (3,1)+1/3 + 1
48i(O4)RR

+ 7
48(O5)RR

4-i & 5-i

(dReL)(uR)(dL)(uLeL) #14 (3,2)−1/6 (1,2)+1/2 (3,1)+1/3
1
32(O3){LR}R

(3,2)−1/6 (1,2)+1/2 (3,3)+1/3 s.a.a

(3,2)−1/6 (8,2)+1/2 (3,1)+1/3 −1
8(O1){LR}R
− 1

48(O3){LR}R
(3,2)−1/6 (8,2)+1/2 (3,3)+1/3 s.a.a

(dReL)(uR)(dL)(uReR) #20 (3,2)−1/6 (1,2)+1/2 (3,1)+1/3
1
32i(O4)LR
− 1

32(O5)LR
(3,2)−1/6 (8,2)+1/2 (3,1)+1/3 − 1

48i(O4)LR
+ 7

48(O5)LR
2-iii-b (dReL)(dL)(uR)(uLeL) #14 (3,2)−1/6 (3,1)−1/3 (3,1)+1/3

1
16(O1){LR}R
+ 1

32(O3){LR}R
(3,2)−1/6 (3,3)−1/3 (3,3)+1/3 s.a.a

(3,2)−1/6 (6,1)−1/3 (3,1)+1/3 − 1
32(O1){LR}R

+ 1
64(O3){LR}R

(3,2)−1/6 (6,3)−1/3 (3,3)+1/3 s.a.a

(dReL)(dL)(uR)(uReR) #20 (3,2)−1/6 (3,1)−1/3 (3,1)−1/3
1
32i(O4)LR
− 3

32(O5)LR
(3,2)−1/6 (6,1)−1/3 (3,1)−1/3

1
64i(O4)LR
+ 1

64(O5)LR
(dReL)(dR)(uL)(uLeL) #11 (3,2)−1/6 (3,2)+1/6 (3,1)+1/3

3
32(O1){RR}R
+ 1

128(O2){RR}R
(3,2)−1/6 (3,2)+1/6 (3,3)+1/3 s.a.a

(3,2)−1/6 (6,2)+1/6 (3,1)+1/3 − 1
64(O1){RR}R

+ 1
256(O2){RR}R

(3,2)−1/6 (6,2)+1/6 (3,3)+1/3 s.a.a

(dReL)(dR)(uL)(uReR) #19 (3,2)−1/6 (3,2)+1/6 (3,1)+1/3 − 1
32i(O4)RR
− 3

32(O5)RR
(3,2)−1/6 (6,2)+1/6 (3,1)+1/3 − 1

64i(O4)RR
+ 1

64(O5)RR

Table 8: Decomposition #2-iii. In case of decomposition #2-iii-a, we will have not only #2-iii-a,
but also #4-i and #5-i.
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Mediators (SU(3)c, SU(2)L)U(1)Y

# Operators BL S ψ S′ Basis op.

3-i (uLuL)(eL)(eL)(dRdR) #11 (6,3)+1/3 (6,2)−1/6 (6,1)−2/3 − 1
16(O1){RR}R+ 1

64(O2){RR}R
(uRuR)(eL)(eL)(dLdL) #12 (6,1)+4/3 (6,2)+5/6 (6,3)+1/3 − 1

16(O1){LL}R + 1
64 (O2){LL}R

(uRuR)(eR)(eR)(dRdR) — (6,1)+4/3 (6,1)+1/3 (6,1)−2/3
1
16 (O3){RR}L

3-ii (uLuL)(dR)(dR)(eLeL) #11 (6,3)+1/3 (3,3)+2/3 (1,3)+1 − 1
16(O1){RR}R+ 1

64(O2){RR}R
(uRuR)(dL)(dL)(eLeL) #12 (6,1)+4/3 (3,2)+7/6 (1,3)+1 − 1

16(O1){LL}R + 1
64 (O2){LL}R

(uRuR)(dR)(dR)(eReR) — (6,1)+4/3 (3,1)+5/3 (1,1)+2
1
16 (O3){RR}L

3-iii (dLdL)(uR)(uR)(eLeL) #12 (6,3)−1/3 (3,3)+1/3 (1,3)+1 − 1
16(O1){LL}R + 1

64 (O2){LL}R
(dRdR)(uL)(uL)(eLeL) #11 (6,1)+2/3 (3,2)+5/6 (1,3)+1 − 1

16(O1){RR}R+ 1
64(O2){RR}R

(dRdR)(uR)(uR)(eReR) — (6,1)+2/3 (3,1)+4/3 (1,1)+2
1
16 (O3){RR}L

4-i (dLeR)(uR)(uR)(dReL) #20 (3,2)−7/6 (1,2)−1/2 (3,2)+1/6 − 1
32i(O4)LR − 1

32 (O5)LR
(3,2)−7/6 (8,2)−1/2 (3,2)+1/6 − 1

24i(O4)LR − 1
24 (O5)LR

(dReL)(uL)(uL)(dReL) #11 (3,2)−1/6 (1,1)0 (3,2)+1/6
1
32 (O1){RR}R − 1

128 (O2){RR}R
(3,2)−1/6 (8,1)0 (3,2)+1/6

1
24 (O1){RR}R − 1

96(O2){RR}R
4-ii-a (uLuL)(dR)(eL)(eLdR) #11 (6,3)+1/3 (3,3)+2/3 (3,2)+1/6

1
32 (O1){RR}R − 1

128 (O2){RR}R
(uRuR)(dL)(eR)(eLdR) #20 (6,1)+4/3 (3,2)+7/6 (3,2)+1/6 − 1

32i(O4)LR − 1
32 (O5)LR

(uRuR)(dR)(eL)(eRdL) #20 (6,1)+4/3 (3,1)+5/3 (3,2)+7/6 − 1
32i(O4)LR − 1

32 (O5)LR
4-ii-b (uLuL)(eL)(dR)(eLdR) #11 (6,3)+1/3 (6,2)−1/6 (3,2)+1/6

1
32 (O1){RR}R − 1

128 (O2){RR}R
(uRuR)(eR)(dL)(eLdR) #20 (6,1)+4/3 (6,1)+1/3 (3,2)+1/6 − 1

32i(O4)LR − 1
32 (O5)LR

(uRuR)(eL)(dR)(eRdL) #20 (6,1)+4/3 (6,2)+5/6 (3,2)+7/6 − 1
32(O5)LR − 1

32i(O4)LR
5-i (uLeL)(dR)(dR)(uLeL) #11 (3,1)−1/3 (1,1)0 (3,1)+1/3

1
32 (O1){RR}R − 1

128 (O2){RR}R
(3,1)−1/3 (1,3)0 (3,1)+1/3 s.a.a

(3,1)−1/3 (8,1)0 (3,1)+1/3
1
24 (O1){RR}R − 1

96(O2){RR}R
(3,1)−1/3 (8,3)0 (3,1)+1/3 s.a.a

(uReR)(dR)(dR)(uLeL) #19 (3,1)−1/3 (1,3)0 (3,1)+1/3
1
32i(O4)RR − 1

32 (O5)RR
(3,1)−1/3 (8,3)0 (3,1)+1/3

1
24i(O4)RR − 1

24 (O5)RR
(uReR)(dR)(dR)(uReR) — (3,1)−1/3 (1,3)0 (3,1)+1/3 − 1

32(O3){RR}L
(3,1)−1/3 (8,3)0 (3,1)+1/3 − 1

24(O3){RR}L
5-ii-a (uLeL)(uL)(eL)(dRdR) #11 (3,1)−1/3 (6,2)−1/6 (6,1)−2/3

1
32 (O1){RR}R − 1

128 (O2){RR}R
(3,3)−1/3 (6,2)−1/6 (6,1)−2/3 s.a.a

(uLeL)(uR)(eR)(dRdR) #19 (3,1)−1/3 (6,1)+1/3 (6,1)−2/3
1
32i(O4)RR − 1

32 (O5)RR
(uReR)(uL)(eL)(dRdR) #19 (3,1)−1/3 (6,2)−1/6 (6,1)−2/3

1
32i(O4)RR − 1

32 (O5)RR
(uReR)(uR)(eR)(dRdR) — (3,1)−1/3 (6,1)+1/3 (6,1)−2/3 − 1

32(O3){RR}L
5-ii-b (uLeL)(eL)(uL)(dRdR) #11 (3,1)−1/3 (3,2)−5/6 (6,1)−2/3

1
32 (O1){RR}R − 1

128 (O2){RR}R
(3,3)−1/3 (3,2)−5/6 (6,1)−2/3 s.a.a

(uLeL)(eR)(uR)(dRdR) #19 (3,1)−1/3 (3,1)−4/3 (6,1)−2/3
1
32i(O4)RR − 1

32 (O5)RR
(uReR)(eL)(uL)(dRdR) #19 (3,1)−1/3 (3,2)−5/6 (6,1)−2/3

1
32i(O4)RR − 1

32 (O5)RR
(uReR)(eR)(uR)(dRdR) — (3,1)−1/3 (3,1)−4/3 (6,1)−2/3 − 1

32(O3){RR}L

Table 9: Decompositions #3, #4, and #5. The operators with two eR’s are not listed in the paper
by Babu and Leung (BL) [45].
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Figure 5: The four different insertions for topology-II: SSS, VVV, SSV and VVS. Note, that both
VVV and SSV have necessarily derivative couplings. For a discussion see text.

A.4 Topology II

We can decompose the 0νββ operator with T-II in practically the same way as T-I. However, there
are also some differences, which we will briefly discuss. As mentioned above, and shown in Fig. 5,
there are four possible combinations of scalars and vectors to complete the T-II decomposition. As
shown in the figure, both VVV and SSV necessarily involve derivative couplings. They lead to an
effective d = 10 operator,

Od=10 ∝
1

Λ6
∂ρ(ūūddēē)

ρ =
q

Λ

1

Λ5
(ūūddēē), (41)

where q is a typical momentum of the 0νββ process. Therefore, they are suppressed by a factor of
q/Λ in comparison with decompositions of the d = 9 operators without derivatives and can be safely
neglected.

Diagrams of the type SVV come from vectors being gauge bosons, i.e., from the covariant deriva-
tive of the scalar field S:

Lgauge = (DµS)†(DµS) ⊃ g2S†SVµV µ ⊃ g2〈S〉SVµV µ, (42)

if the scalar S can take a vacuum expectation value 〈S〉. Here, S is a fluctuation around the vev
S = 〈S〉+S, which would be a scalar mediator. If this vev breaks SU(2)L, this leads to a suppression
order v/Λ, but, as can be seen from the example of LR symmetry, an SM singlet vev can produce
a coupling whose order is of Λ, such that the total amplitude for T-II is again proportional to Λ−5.
Similarly, for diagrams of the type SSS, the coupling has a dimension of mass, leading potentially to
a Λ−5 total factor for the diagram.

Since new vectors require an extension of the gauge group, we consider the SSS case to be the more
easily motivated choice. In our detailed decomposition of T-II, presented in Tab. 10, we therefore

19Here, the charges are fixed, following the charge flow v1 ← v2 ← v3 ← v4.
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Mediators (SU(3)c, SU(2)L)U(1)Y

# Operators BL S S′ S′′ Basis op.

1 (uLdR)(uLdR)(eLeL) #11 (1,2)+1/2 (1,2)+1/2 (1,3)−1
1
8(O1){RR}R

(8,2)+1/2 (8,2)+1/2 (1,3)−1 − 5
24(O1){RR}R− 1

32(O2){RR}R
(uRdL)(uLdR)(eLeL) #14 (1,2)+1/2 (1,2)+1/2 (1,3)−1

1
8(O1){LR}R

(8,2)+1/2 (8,2)+1/2 (1,3)−1 − 1
12(O1){LR}R − 1

8(O3){LR}R
(uRdL)(uRdL)(eLeL) #12 (1,2)+1/2 (1,2)+1/2 (1,3)−1

1
8(O1){LL}R

(8,2)+1/2 (8,2)+1/2 (1,3)−1 − 5
24(O1){LL}R − 1

32 (O2){LL}R
2 (uLdR)(uLeL)(dReL) #11 (1,2)+1/2 (3,1)−1/3 (3,2)−1/6 − 1

16(O1){RR}R
(1,2)+1/2 (3,3)−1/3 (3,2)−1/6 s.a.a

(8,2)+1/2 (3,1)−1/3 (3,2)−1/6
5
48 (O1){RR}R + 1

64(O2){RR}R
(8,2)+1/2 (3,3)−1/3 (3,2)−1/6 s.a.a

(uLdR)(uReR)(dReL) #19 (1,2)+1/2 (3,1)−1/3 (3,2)−1/6
1
16 (O5)RR

(8,2)+1/2 (3,1)−1/3 (3,2)−1/6 − 1
16i(O4)RR − 5

48(O5)RR
(uRdL)(uLeL)(dReL) #14 (1,2)+1/2 (3,1)−1/3 (3,2)−1/6 − 1

16(O1){LR}R
(1,2)+1/2 (3,3)−1/3 (3,2)−1/6 s.a.a

(8,2)+1/2 (3,1)−1/3 (3,2)−1/6
1
24 (O1){LR}R + 1

16(O3){LR}R
(8,2)+1/2 (3,3)−1/3 (3,2)−1/6 s.a.a

(uRdL)(uReR)(dReL) #20 (1,2)+1/2 (3,1)−1/3 (3,2)−1/6
1
16 (O5)LR

(8,2)+1/2 (3,1)−1/3 (3,2)−1/6
1
16i(O4)LR − 5

48 (O5)LR
3 (uLuL)(dRdR)(eLeL) #11 (6,3)+1/3 (6,1)+2/3 (1,3)−1 − 1

24(O1){RR}R+ 1
96(O2){RR}R

(uRuR)(dLdL)(eLeL) #12 (6,1)+4/3 (6,3)−1/3 (1,3)−1 − 1
24(O1){LL}R + 1

96 (O2){LL}R
(uRuR)(dRdR)(eReR) — (6,1)+4/3 (6,1)+2/3 (1,1)−2

1
24 (O3){RR}L

4 (uLuL)(dReL)(dReL) #11 (6,3)+1/3 (3,2)−1/6 (3,2)−1/6
1
48 (O1){RR}R − 1

192(O2){RR}R
(uRuR)(dLeR)(dReL) #20 (6,1)+4/3 (3,2)−7/6 (3,2)−1/6 − 1

48i(O4)LR − 1
48 (O5)LR

5 (uLeL)(uLeL)(dRdR) #11 (3,1)−1/3 (3,1)−1/3 (6,1)+2/3
1
48 (O1){RR}R − 1

192(O2){RR}R
(3,3)−1/3 (3,3)−1/3 (6,1)+2/3 s.a.a

(uLeL)(uReR)(dRdR) #19 (3,1)−1/3 (3,1)−1/3 (6,1)+2/3 + 1
96i(O4)RR − 1

48(O5)RR
(uReR)(uReR)(dRdR) — (3,1)−1/3 (3,1)−1/3 (6,1)+2/3 − 1

48(O3){RR}L

Table 10: Decomposition and operator projection for the three-scalar case of T-II.

concentrate on the case of SSS. The results for SVV can be derived easily from the recipes discussed
above.
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