869 research outputs found

    Chromospheric evaporation flows and density changes deduced from Hinode/EIS during an M1.6 flare

    Full text link
    We analyzed high-cadence sit-and-stare observations acquired with the Hinode/EIS spectrometer and HXR measurements acquired with RHESSI during an M-class flare. During the flare impulsive phase, we observe no significant flows in the cooler Fe XIII line but strong upflows, up to 80-150 km/s, in the hotter Fe XVI line. The largest Doppler shifts observed in the Fe XVI line were co-temporal with the sharp intensity peak. The electron density obtained from a Fe XIII line pair ratio exhibited fast increase (within two minutes) from the pre-flare level of 5.01x10^(9) cm^(-3) to 3.16x10^(10) cm^(-3) during the flare peak. The nonthermal energy flux density deposited from the coronal acceleration site to the lower atmospheric layers during the flare peak was found to be 1.34x10^(10) erg/s/cm^(2) for a low-energy cut-off that was estimated to be 16 keV. During the decline flare phase, we found a secondary intensity and density peak of lower amplitude that was preceded by upflows of 15 km/s that were detected in both lines. The flare was also accompanied by a filament eruption that was partly captured by the EIS observations. We derived Doppler velocities of 250-300 km/s for the upflowing filament material.The spectroscopic results for the flare peak are consistent with the scenario of explosive chromospheric evaporation, although a comparatively low value of the nonthermal energy flux density was determined for this phase of the flare. This outcome is discussed in the context of recent hydrodynamic simulations. It provides observational evidence that the response of the atmospheric plasma strongly depends on the properties of the electron beams responsible for the heating, in particular the steepness of the energy distribution.Comment: 13 pages, 11 figures, accepted for publication in Astronomy and Astrophysic

    Characteristics of long-duration inhibitory postsynaptic potentials in rat neocortical neurons in vitro

    Get PDF
    1. The characteristics of long-duration inhibitory postsynaptic potentials (l-IPSPs) which are evoked in rat frontal neocortical neurons by local electrical stimulation were investigated with intracellular recordings from anin vitro slice preparation. 2. Stimulation with suprathreshold intensities evoked l-IPSPs with typical durations of 600–900 msec at resting membrane potential. Conductance increases of 15–60% were measured at the peak amplitude of l-IPSPs (150–250 msec poststimulus). 3. The duration of the conductance increases during l-IPSPs displayed a significant voltage dependence, decreasing as the membrance potential was depolarized and increasing with hyperpolarization. 4. The reversal potential of l-IPSPs is significantly altered by reductions in the extracellular potassium concentration. Therefore it is concluded that l-IPSPs in rat neocortical neurons are generated by the activation of a potassium conductance. 5. l-IPSPs exhibit stimulation fatigue. Stimulation with a frequency of 1 Hz produces a complete fatigue of the conductance increases during l-IPSPs after approximately 20 consecutive stimuli. Recovery from this fatigue requires minutes. 6. l-IPSPs are not blocked by bicuculline but are blocked by baclofen

    Dissecting the Moth: Discovery of an off-centered ring in the HD 61005 debris disk with high-resolution imaging

    Full text link
    The debris disk known as "The Moth" is named after its unusually asymmetric surface brightness distribution. It is located around the ~90 Myr old G8V star HD 61005 at 34.5 pc and has previously been imaged by the HST at 1.1 and 0.6 microns. Polarimetric observations suggested that the circumstellar material consists of two distinct components, a nearly edge-on disk or ring, and a swept-back feature, the result of interaction with the interstellar medium. We resolve both components at unprecedented resolution with VLT/NACO H-band imaging. Using optimized angular differential imaging techniques to remove the light of the star, we reveal the disk component as a distinct narrow ring at inclination i=84.3 \pm 1.0{\deg}. We determine a semi-major axis of a=61.25 \pm 0.85 AU and an eccentricity of e=0.045 \pm 0.015, assuming that periastron is located along the apparent disk major axis. Therefore, the ring center is offset from the star by at least 2.75 \pm 0.85 AU. The offset, together with a relatively steep inner rim, could indicate a planetary companion that perturbs the remnant planetesimal belt. From our imaging data we set upper mass limits for companions that exclude any object above the deuterium-burning limit for separations down to 0.3". The ring shows a strong brightness asymmetry along both the major and minor axis. A brighter front side could indicate forward-scattering grains, while the brightness difference between the NE and SW components can be only partly explained by the ring center offset, suggesting additional density enhancements on one side of the ring. The swept-back component appears as two streamers originating near the NE and SW edges of the debris ring.Comment: 6 pages, 6 figures. Accepted to Astronomy and Astrophysics letter

    The gravitational mass of Proxima Centauri measured with SPHERE from a microlensing event

    Full text link
    Proxima Centauri, our closest stellar neighbour, is a low-mass M5 dwarf orbiting in a triple system. An Earth-mass planet with an 11 day period has been discovered around this star. The star's mass has been estimated only indirectly using a mass-luminosity relation, meaning that large uncertainties affect our knowledge of its properties. To refine the mass estimate, an independent method has been proposed: gravitational microlensing. By taking advantage of the close passage of Proxima Cen in front of two background stars, it is possible to measure the astrometric shift caused by the microlensing effect due to these close encounters and estimate the gravitational mass of the lens (Proxima Cen). Microlensing events occurred in 2014 and 2016 with impact parameters, the closest approach of Proxima Cen to the background star, of 1\farcs6 ±\pm 0\farcs1 and 0\farcs5 ±\pm 0\farcs1, respectively. Accurate measurements of the positions of the background stars during the last two years have been obtained with HST/WFC3, and with VLT/SPHERE from the ground. The SPHERE campaign started on March 2015, and continued for more than two years, covering 9 epochs. The parameters of Proxima Centauri's motion on the sky, along with the pixel scale, true North, and centering of the instrument detector were readjusted for each epoch using the background stars visible in the IRDIS field of view. The experiment has been successful and the astrometric shift caused by the microlensing effect has been measured for the second event in 2016. We used this measurement to derive a mass of 0.1500.051+0.062^{\textrm{+}0.062}_{-0.051} (an error of \sim 40\%) \MSun for Proxima Centauri acting as a lens. This is the first and the only currently possible measurement of the gravitational mass of Proxima Centauri.Comment: 10 pages, 6 figures, accepted by MNRA

    Reviving the Roman Odeon of Aphrodisias: Dynamic Animation and Variety Control of Crowds in Virtual Heritage

    Get PDF
    In this paper we propose a new method for rendering crowds of virtual humans with dynamicallydeformed skeletons with levels of detail using two simple caching schemes for animations and geometry. Weshow how the virtual heritage project ERATO pushed for these innovations as we did not find any off-theshelfproducts for the purpose. We also show how to create a large variety in appearance using graphicsalgorithm techniques that run on graphics cards with a fixed function pipeline support like the one ofOpenGL 1.

    The VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits: II- Survey description, results and performances

    Get PDF
    In anticipation of the VLT/SPHERE planet imager guaranteed time programs, we have conducted a preparatory survey of 86 stars between 2009 and 2013 in order to identify new faint comoving companions to ultimately carry out a comprehensive analysis of the occurence of giant planets and brown dwarf companions at wide (10-2000 AU) orbits around young, solar-type stars. We used NaCo at VLT to explore the occurrence rate of giant planets and brown dwarfs between typically 0.1 and 8''. Diffraction-limited observations in H-band combined with angular differential imaging enabled us to reach primary star-companion brightness ratios as small as 10-6 at 1.5''. 12 systems were resolved as new binaries, including the discovery of a new white dwarf companion to the star HD8049. Around 34 stars, at least one companion candidate was detected in the observed field of view. More than 400 faint sources were detected, 90% of them in 4 crowded fields. With the exception of HD8049B, we did not identify any new comoving companions. The survey also led to spatially resolved images of the thin debris disk around HD\,61005 that have been published earlier. Finally, considering the survey detection limits, we derive a preliminary upper limit on the frequency of giant planets for semi-major axes of [10,2000] AU: typically less than 15% between 100 and 500 AU, and less than 10% between 50 and 500 AU for exoplanets more massive than 5 MJup and 10 MJup respectively, considering a uniform input distribution and with a confidence level of 95%.Comment: 19 pages, 8 figures, 12 Tables, accepted to A&

    Accreting Protoplanets in the LkCa 15 Transition Disk

    Full text link
    Exoplanet detections have revolutionized astronomy, offering new insights into solar system architecture and planet demographics. While nearly 1900 exoplanets have now been discovered and confirmed, none are still in the process of formation. Transition discs, protoplanetary disks with inner clearings best explained by the influence of accreting planets, are natural laboratories for the study of planet formation. Some transition discs show evidence for the presence of young planets in the form of disc asymmetries or infrared sources detected within their clearings, as in the case of LkCa 15. Attempts to observe directly signatures of accretion onto protoplanets have hitherto proven unsuccessful. Here we report adaptive optics observations of LkCa 15 that probe within the disc clearing. With accurate source positions over multiple epochs spanning 2009 - 2015, we infer the presence of multiple companions on Keplerian orbits. We directly detect H{\alpha} emission from the innermost companion, LkCa 15 b, evincing hot (~10,000 K) gas falling deep into the potential well of an accreting protoplanet.Comment: 35 pages, 3 figures, 1 table, 9 extended data item

    What is in a pebble shape?

    Get PDF
    We propose to characterize the shapes of flat pebbles in terms of the statistical distribution of curvatures measured along the pebble contour. This is demonstrated for the erosion of clay pebbles in a controlled laboratory apparatus. Photographs at various stages of erosion are analyzed, and compared with two models. We find that the curvature distribution complements the usual measurement of aspect ratio, and connects naturally to erosion processes that are typically faster at protruding regions of high curvature.Comment: Phys. Rev. Lett. (to appear
    corecore