5,062 research outputs found
On FO2 quantifier alternation over words
We show that each level of the quantifier alternation hierarchy within
FO^2[<] -- the 2-variable fragment of the first order logic of order on words
-- is a variety of languages. We then use the notion of condensed rankers, a
refinement of the rankers defined by Weis and Immerman, to produce a decidable
hierarchy of varieties which is interwoven with the quantifier alternation
hierarchy -- and conjecturally equal to it. It follows that the latter
hierarchy is decidable within one unit: given a formula alpha in FO^2[<], one
can effectively compute an integer m such that alpha is equivalent to a formula
with at most m+1 alternating blocks of quantifiers, but not to a formula with
only m-1 blocks. This is a much more precise result than what is known about
the quantifier alternation hierarchy within FO[<], where no decidability result
is known beyond the very first levels
High speed InAs electron avalanche photodiodes overcome the conventional gain-bandwidth product limit
High bandwidth, uncooled, Indium Arsenide (InAs) electron avalanche photodiodes (e-APDs) with unique and highly desirable characteristics are reported. The e-APDs exhibit a 3dB bandwidth of 3.5 GHz which, unlike that of conventional APDs, is shown not to reduce with increasing avalanche gain. Hence these InAs e-APDs demonstrate a characteristic of theoretically ideal electron only APDs, the absence of a gain-bandwidth product limit. This is important because gain-bandwidth products restrict the maximum exploitable gain in all conventional high bandwidth APDs. Non-limiting gain-bandwidth products up to 580 GHz have been measured on these first high bandwidth e-APDs. (C) 2011 Optical Society of Americ
Molecular Signatures in the Near Infrared Dayside Spectrum of HD 189733b
We have measured the dayside spectrum of HD 189733b between 1.5 and 2.5
microns using the NICMOS instrument on the Hubble Space Telescope. The emergent
spectrum contains significant modulation, which we attribute to the presence of
molecular bands seen in absorption. We find that water (H2O), carbon monoxide
(CO), and carbon dioxide (CO2) are needed to explain the observations, and we
are able to estimate the mixing ratios for these molecules. We also find
temperature decreases with altitude in the ~0.01 < P < ~1 bar region of the
dayside near-infrared photosphere and set an upper limit to the dayside
abundance of methane (CH4) at these pressures.Comment: 13 pages, 3 figures. accepted in Astrophysical Journal Letter
Dilution effects in HoYSnO: from the Spin Ice to the single-ion magnet
A study of the modifications of the magnetic properties of
HoYSnO upon varying the concentration of diamagnetic
Y ions is presented. Magnetization and specific heat measurements show
that the Spin Ice ground-state is only weakly affected by doping for , even if non-negligible changes in the crystal field at Ho occur.
In this low doping range SR relaxation measurements evidence a
modification in the low-temperature dynamics with respect to the one observed
in the pure Spin Ice. For , or at high temperature, the dynamics
involve fluctuations among Ho crystal field levels which give rise to a
characteristic peak in Sn nuclear spin-lattice relaxation rate. In this
doping limit also the changes in Ho magnetic moment suggest a variation
of the crystal field parameters.Comment: 4 pages, 5 figures, proceedings of HFM2008 Conferenc
From algebra to logic: there and back again -- the story of a hierarchy
This is an extended survey of the results concerning a hierarchy of languages
that is tightly connected with the quantifier alternation hierarchy within the
two-variable fragment of first order logic of the linear order.Comment: Developments in Language Theory 2014, Ekaterinburg : Russian
Federation (2014
Complexity of checking whether two automata are synchronized by the same language
A deterministic finite automaton is said to be synchronizing if it has a
reset word, i.e. a word that brings all states of the automaton to a particular
one. We prove that it is a PSPACE-complete problem to check whether the
language of reset words for a given automaton coincides with the language of
reset words for some particular automaton.Comment: 12 pages, 4 figure
Optimization in task--completion networks
We discuss the collective behavior of a network of individuals that receive,
process and forward to each other tasks. Given costs they store those tasks in
buffers, choosing optimally the frequency at which to check and process the
buffer. The individual optimizing strategy of each node determines the
aggregate behavior of the network. We find that, under general assumptions, the
whole system exhibits coexistence of equilibria and hysteresis.Comment: 18 pages, 3 figures, submitted to JSTA
Synchronizing Automata on Quasi Eulerian Digraph
In 1964 \v{C}ern\'{y} conjectured that each -state synchronizing automaton
posesses a reset word of length at most . From the other side the best
known upper bound on the reset length (minimum length of reset words) is cubic
in . Thus the main problem here is to prove quadratic (in ) upper bounds.
Since 1964, this problem has been solved for few special classes of \sa. One of
this result is due to Kari \cite{Ka03} for automata with Eulerian digraphs. In
this paper we introduce a new approach to prove quadratic upper bounds and
explain it in terms of Markov chains and Perron-Frobenius theories. Using this
approach we obtain a quadratic upper bound for a generalization of Eulerian
automata.Comment: 8 pages, 1 figur
Synchronization Problems in Automata without Non-trivial Cycles
We study the computational complexity of various problems related to
synchronization of weakly acyclic automata, a subclass of widely studied
aperiodic automata. We provide upper and lower bounds on the length of a
shortest word synchronizing a weakly acyclic automaton or, more generally, a
subset of its states, and show that the problem of approximating this length is
hard. We investigate the complexity of finding a synchronizing set of states of
maximum size. We also show inapproximability of the problem of computing the
rank of a subset of states in a binary weakly acyclic automaton and prove that
several problems related to recognizing a synchronizing subset of states in
such automata are NP-complete.Comment: Extended and corrected version, including arXiv:1608.00889.
Conference version was published at CIAA 2017, LNCS vol. 10329, pages
188-200, 201
Towards A Holographic Model of D-Wave Superconductors
The holographic model for S-wave high T_c superconductors developed by
Hartnoll, Herzog and Horowitz is generalized to describe D-wave
superconductors. The 3+1 dimensional gravitational theory consists a symmetric,
traceless second-rank tensor field and a U(1) gauge field in the background of
the AdS black hole. Below T_c the tensor field which carries the U(1) charge
undergoes the Higgs mechanism and breaks the U(1) symmetry of the boundary
theory spontaneously. The phase transition characterized by the D-wave
condensate is second order with the mean field critical exponent beta = 1/2. As
expected, the AC conductivity is isotropic below T_c and the system becomes
superconducting in the DC limit but has no hard gap.Comment: 14 pages, 2 figures, Some typos corrected, Matched with the published
versio
- …
