We show that each level of the quantifier alternation hierarchy within
FO^2[<] -- the 2-variable fragment of the first order logic of order on words
-- is a variety of languages. We then use the notion of condensed rankers, a
refinement of the rankers defined by Weis and Immerman, to produce a decidable
hierarchy of varieties which is interwoven with the quantifier alternation
hierarchy -- and conjecturally equal to it. It follows that the latter
hierarchy is decidable within one unit: given a formula alpha in FO^2[<], one
can effectively compute an integer m such that alpha is equivalent to a formula
with at most m+1 alternating blocks of quantifiers, but not to a formula with
only m-1 blocks. This is a much more precise result than what is known about
the quantifier alternation hierarchy within FO[<], where no decidability result
is known beyond the very first levels