31 research outputs found
Modeling axial spinal segments of the salamander central pattern generator for locomotion
Poster presentationInternational audiencen.
From cineradiography to biorobots: an approach for designing robots to emulate and study animal locomotion
Robots are increasingly used as scientific tools to investigate animal locomotion. However, designing a robot that properly emulates the kinematic and dynamic properties of an animal is difficult because of the complexity of musculoskeletal systems and the limitations of current robotics technology. Here we propose a design process that combines high-speed cineradiography, optimization, dynamic scaling, 3D printing, high-end servomotors, and a tailored dry-suit to construct Pleurobot: a salamander-like robot that closely mimics its biological counterpart, Pleurodeles waltl. Our previous robots helped us test and confirm hypotheses on the interaction between the locomotor neuronal networks of the limbs and the spine to generate basic swimming and walking gaits. With Pleurobot, we demonstrate a design process that will enable studies of richer motor skills in salamanders. In particular, we are interested in how these richer motor skills can be obtained by extending our spinal cord models with the addition of more descending pathways and more detailed limb central pattern generators (CPG) networks. Pleurobot is a dynamically-scaled amphibious salamander robot with a large number of actuated degrees of freedom (27 in total). Because of our design process, the robot can capture most of the animal’s degrees of freedom and range of motion, especially at the limbs. We demonstrate the robot’s abilities by imposing raw kinematic data, extracted from X-ray videos, to the robot’s joints for basic locomotor behaviors in water and on land. The robot closely matches the behavior of the animal in terms of relative forward speeds and lateral displacements. Ground reaction forces during walking also resemble those of the animal. Based on our results we anticipate that future studies on richer motor skills in salamanders will highly benefit from Pleurobot’s design
Fractional multi-models of the frog gastrocnemius muscle
In this article, frog gastrocnemius muscles are studied, and a multi-model identification presented. A transfer function is defined with few parameters to simulate striated muscle (Gastroctnemius) behaviour, for inclusion in a future real-time salamander computer model. A two-model structure permits description of both contraction and relaxation properties. Here, two physiological influences, fatigue and fibre types, are taken into account. A multi-model structure for each fibre type (fast (IIB), intermediate (IIA) and slow (I) fibres) is also used for inclusion in a future agonist-antagonist structure computer model
Flexibility of the axial central pattern generator network for locomotion in the salamander
In tetrapods, limb and axial movements are coordinated during locomotion. It is well established that inter- and intralimb coordination show considerable variations during ongoing locomotion. Much less is known about the flexibility of the axial musculoskeletal system during locomotion and the neural mechanisms involved. Here we examined this issue in the salamander Pleurodeles waltlii, which is capable of locomotion in both aquatic and terrestrial environments. Kinematics of the trunk and electromyograms from the mid-trunk epaxial myotomes were recorded during four locomotor behaviors in freely moving animals. A similar approach was used during rhythmic struggling movements since this would give some insight into the flexibility of the axial motor system. Our results show that each of the forms of locomotion and the struggling behavior is characterized by a distinct combination of mid-trunk motor patterns and cycle durations. Using in vitro electrophysiological recordings in isolated spinal cords, we observed that the spinal networks activated with bath-applied N-methyl-d-aspartate could generate these axial motor patterns. In these isolated spinal cord preparations, the limb motor nerve activities were coordinated with each mid-trunk motor pattern. Furthermore, isolated mid-trunk spinal cords and hemicords could generate the mid-trunk motor patterns. This indicates that each side of the cord comprises a network able to generate coordinated axial motor activity. The roles of descending and sensory inputs in the behavior-related changes in axial motor coordination are discussed
Mécanismes de fluoration d’un oxyde de manganèse MnO.
International audienc