951 research outputs found

    The Intrinsic Shapes of Molecular Cloud Fragments over a Range of Length Scales

    Full text link
    We decipher intrinsic three-dimensional shape distributions of molecular clouds, cloud cores, Bok globules, and condensations using recently compiled catalogues of observed axis ratios for these objects mapped in carbon monoxide, ammonia, through optical selection, or in continuum dust emission. We apply statistical techniques to compare assumed intrinsic axis ratio distributions with observed projected axis ratio distributions. Intrinsically triaxial shapes produce projected distributions which agree with observations. Molecular clouds mapped in 12^{12}CO are intrinsically triaxial but more nearly prolate than oblate, while the smaller cloud cores, Bok globules, and condensations are also intrinsically triaxial but more nearly oblate than prolate.Comment: 12 pages, 11 figures. Version with color figures can be found at http://www.astro.uwo.ca/~cjones/ or http://www.astro.uwo.ca/~basu/. To appear in ApJ, 10 April 2002, v. 569, no.

    On the fidelity of the core mass functions derived from dust column density data

    Full text link
    Aims: We examine the recoverability and completeness limits of the dense core mass functions (CMFs) derived for a molecular cloud using extinction data and a core identification scheme based on two-dimensional thresholding. Methods: We performed simulations where a population of artificial cores was embedded into the variable background extinction field of the Pipe nebula. We extracted the cores from the simulated extinction maps, constructed the CMFs, and compared them to the input CMFs. The simulations were repeated using a variety of extraction parameters and several core populations with differing input mass functions and differing degrees of crowding. Results: The fidelity of the observed CMF depends on the parameters selected for the core extraction algorithm for our background. More importantly, it depends on how crowded the core population is. We find that the observed CMF recovers the true CMF reliably when the mean separation of cores is larger than their mean diameter (f>1). If this condition holds, the derived CMF is accurate and complete above M > 0.8-1.5 Msun, depending on the parameters used for the core extraction. In the simulations, the best fidelity was achieved with the detection threshold of 1 or 2 times the rms-noise of the extinction data, and with the contour level spacings of 3 times the rms-noise. Choosing larger threshold and wider level spacings increases the limiting mass. The simulations show that when f>1.5, the masses of individual cores are recovered with a typical uncertainty of 25-30 %. When f=1 the uncertainty is ~60 %. In very crowded cases where f<1 the core identification algorithm is unable to recover the masses of the cores adequately. For the cores of the Pipe nebula f~2.0 and therefore the use of the method in that region is justified.Comment: 9 pages, 6 figures, accepted for publication in A&

    Sensitive Limits on the Water Abundance in Cold Low Mass Molecular Cores

    Get PDF
    We present SWAS observations of water vapor in two cold star-less clouds, B68 and Core D in rho Ophiuchus. Sensitive non-detections of the 1(10)-1(01) transition of o-H2O are reported for each source. Both molecular cores have been previously examined by detailed observations that have characterized the physical structure. Using these rather well defined physical properties and a Monte-Carlo radiation transfer model we have removed one of the largest uncertainties from the abundance calculation and set the lowest water abundance limit to date in cold low-mass molecular cores. These limits are < 3 x 10^{-8} (relative to H2) and < 8 x 10^{-9} in B68 and rho Oph D, respectively. Such low abundances confirm the general lack of ortho-water vapor in cold (T < 20 K) cores. Provided that the ortho/para ratio of water is not near zero, these limits are well below theoretical predictions and appear to support the suggestion that most of the water in dense low-mass cores is frozen onto the surfaces of cold dust grains.Comment: 12 pages, 3 figures, accepted by Astrophysical Journal Letter

    Radiative Transfer in Prestellar Cores: A Monte Carlo Approach

    Full text link
    We use our Monte Carlo radiative transfer code to study non-embedded prestellar cores and cores that are embedded at the centre of a molecular cloud. Our study indicates that the temperature inside embedded cores is lower than in isolated non-embedded cores, and generally less than 12 K, even when the cores are surrounded by an ambient cloud of small visual extinction (Av~5). Our study shows that the best wavelength region to observe embedded cores is between 400 and 500 microns, where the core is quite distinct from the background. We also predict that very sensitive observations (~1-3 MJy/sr) at 170-200 microns can be used to estimate how deeply a core is embedded in its parent molecular cloud. Finally, we present preliminary results of asymmetric models of non-embedded cores.Comment: 8 pages, 15 figures, to appear in the conference proceedings of "Open Issues in Local Star Formation and Early Stellar Evolution", held in Ouro Preto (Brazil), April 5-10, 200

    Shapes of Molecular Cloud Cores and the Filamentary Mode of Star Formation

    Full text link
    Using recent dust continuum data, we generate the intrinsic ellipticity distribution of dense, starless molecular cloud cores. Under the hypothesis that the cores are all either oblate or prolate randomly-oriented spheroids, we show that a satisfactory fit to observations can be obtained with a gaussian prolate distribution having a mean intrinsic axis ratio of 0.54. Further, we show that correlations exist between the apparent axis ratio and both the peak intensity and total flux density of emission from the cores, the sign of which again favours the prolate hypothesis. The latter result shows that the mass of a given core depends on its intrinsic ellipticity. Monte Carlo simulations are performed to find the best-fit power law of this dependence. Finally, we show how these results are consistent with an evolutionary scenario leading from filamentary parent clouds to increasingly massive, condensed, and roughly spherical embedded cores.Comment: 16 pages, incl. 11 Postscript figures. Accepted by Ap

    Large Area Mapping at 850 Microns. V. Analysis of the Clump Distribution in the Orion A South Molecular Cloud

    Get PDF
    We present results from a 2300 arcmin^2 survey of the Orion A molecular cloud at 450 and 850 micron using the Submillimetre Common-User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope. The region mapped lies directly south of the OMC1 cloud core and includes OMC4, OMC5, HH1/2, HH34, and L1641N. We identify 71 independent clumps in the 850 micron map and compute size, flux, and degree of central concentration in each. Comparison with isothermal, pressure-confined, self-gravitating Bonnor-Ebert spheres implies that the clumps have internal temperatures T_d ~ 22 +/- K and surface pressures log (k^-1 P cm^-3 K) = 6.0 +/- 0.2. The clump masses span the range 0.3 - 22 Msun assuming a dust temperature T_d ~ 20 K and a dust emissivity kappa_850 = 0.02 cm^2 g^-1. The distribution of clump masses is well characterized by a power-law N(M) propto M^-alpha with alpha = 2.0 +/- 0.5 for M > 3.0 Msun, indicating a clump mass function steeper than the stellar Initial Mass Function. Significant incompleteness makes determination of the slope at lower masses difficult. A comparison of the submillimeter emission map with an H_2 2.122 micron survey of the same region is performed. Several new Class 0 sources are revealed and a correlation is found between both the column density and degree of concentration of the submillimeter sources and the likelihood of coincident H_2 shock emission.Comment: 44 pages, 17 figures, accepted by Ap

    On the properties of fractal cloud complexes

    Full text link
    We study the physical properties derived from interstellar cloud complexes having a fractal structure. We first generate fractal clouds with a given fractal dimension and associate each clump with a maximum in the resulting density field. Then, we discuss the effect that different criteria for clump selection has on the derived global properties. We calculate the masses, sizes and average densities of the clumps as a function of the fractal dimension (D_f) and the fraction of the total mass in the form of clumps (epsilon). In general, clump mass does not fulfill a simple power law with size of the type M_cl ~ (R_cl)**(gamma), instead the power changes, from gamma ~ 3 at small sizes to gamma<3 at larger sizes. The number of clumps per logarithmic mass interval can be fitted to a power law N_cl ~ (M_cl)**(-alpha_M) in the range of relatively large masses, and the corresponding size distribution is N_cl ~ (R_cl)**(-alpha_R) at large sizes. When all the mass is forming clumps (epsilon=1) we obtain that as D_f increases from 2 to 3 alpha_M increases from ~0.3 to ~0.6 and alpha_R increases from ~1.0 to ~2.1. Comparison with observations suggests that D_f ~ 2.6 is roughly consistent with the average properties of the ISM. On the other hand, as the fraction of mass in clumps decreases (epsilon<1) alpha_M increases and alpha_R decreases. When only ~10% of the complex mass is in the form of dense clumps we obtain alpha_M ~ 1.2 for D_f=2.6 (not very different from the Salpeter value 1.35), suggesting this a likely link between the stellar initial mass function and the internal structure of molecular cloud complexes.Comment: 32 pages, 13 figures, 1 table. Accepted for publication in Ap

    Current Star Formation in the Ophiuchus and Perseus Molecular Clouds: Constraints and Comparisons from Unbiased Submillimeter and Mid-Infrared Surveys. II

    Full text link
    We present a census of the population of deeply embedded young stellar objects (YSOs) in the Ophiuchus molecular cloud complex based on a combination of Spitzer Space Telescope mid-infrared data from the "Cores to Disks" (c2d) legacy team and JCMT/SCUBA submillimeter maps from the COMPLETE team. We have applied a method developed for identifying embedded protostars in Perseus to these datasets and in this way construct a relatively unbiased sample of 27 candidate embedded protostars with envelopes more massive than our sensitivity limit (about 0.1 M_sun). Embedded YSOs are found in 35% of the SCUBA cores - less than in Perseus (58%). On the other hand the mid-infrared sources in Ophiuchus have less red mid-infrared colors, possibly indicating that they are less embedded. We apply a nearest neighbor surface density algorithm to define the substructure in each of the clouds and calculate characteristic numbers for each subregion - including masses, star formation efficiencies, fraction of embedded sources etc. Generally the main clusters in Ophiuchus and Perseus (L1688, NGC1333 and IC348) are found to have higher star formation efficiencies than small groups such as B1, L1455 and L1448, which on the other hand are completely dominated by deeply embedded protostars. We discuss possible explanations for the differences between the regions in Perseus and Ophiuchus, such as different evolutionary timescales for the YSOs or differences, e.g., in the accretion in the two clouds.Comment: Accepted for publication in ApJ (56 pages, 13 figures; abstract abridged). Version with full-resolution figures available at http://www.astro.uni-bonn.de/~jes/paper120.pd

    The mass function of dense molecular cores and the origin of the IMF

    Get PDF
    Context: Stars form in the cold dense cores of interstellar molecular clouds and the detailed knowledge of the spectrum of masses of such cores is clearly a key for the understanding of the origin of the IMF. To date, observations have presented somewhat contradictory evidence relating to this issue. Aims: In this paper we propose to derive the mass function of a complete sample of dense molecular cores in a single cloud employing a robust method that uses uses extinction of background starlight to measure core masses and enables the reliable extension of such measurements to lower masses than previously possible. Methods: We use a map of near-infrared extinction in the nearby Pipe dark cloud to identify the population of dense cores in the cloud and measure their masses. Results: We identify 159 dense cores and construct the mass function for this population. We present the first robust evidence for a departure from a single power-law form in the mass function of a population of cores and find that this mass function is surprisingly similar in shape to the stellar IMF but scaled to a higher mass by a factor of about 3. This suggests that the distribution of stellar birth masses (IMF) is the direct product of the dense core mass function and a uniform star formation efficiency of 30%+/-10%, and that the stellar IMF may already be fixed during or before the earliest stages of core evolution. These results are consistent with previous dust continuum studies which suggested that the IMF directly originates from the core mass function. The typical density of ~10^4/cm^3 measured for the dense cores in this cloud suggests that the mass scale that characterizes the dense core mass function may be the result of a simple process of thermal (Jeans) fragmentation.Comment: A&A accepte
    • 

    corecore