417 research outputs found

    The MESSAGEix-GLOBIOM model and scenarios for transition risk analysis

    Get PDF
    This report provides background information to the MESSAGEix-GLOBIOM scenarios that were selected to support transition risk analysis for the Task-Force for Climate Related Financial Disclosures (TCFD) Banking Pilot Phase II. The first part provides an overview of the MESSAGEix-GLOBIOM integrated assessment model, its core methodology, main components and definitions. The second part discusses the selected scenarios and motivation for this selection. The selected scenario cover a range of emission reductions that vary in stringency and pace of emission reduction. We selected the following types of scenarios: Current policy scenarios that limit climate policy to currently implemented or announced policies (NPi: National implemented policies and NDC: Nationally Determined Contributions for 2030) and scenarios with immediate global climate action based on a carbon budget (Immediate2C and Immediate1p5C). Finally, scenarios with delayed global climate action scenarios based on carbon budgets (Delayed2C) and immediate global climate action based on a peak-temperature goal (LowCDR2C and LowCDR1p5C) represent cases with steep emission reductions either immediately or after 2030

    Interactie tussen boven- en ondergrondse organismen

    Get PDF
    Herstel van biodiversiteit is een moeilijk proces aangezien lang niet alle onderliggende mechanismen bekend zijn. Zo is niet bekend hoe boven- en ondergronds levende organismen elkaar beïnvloeden in hun interacties met planten en wat het effect daarvan is op de plantendiversiteit. Met behulp van een 'realistische' proefopstelling hebben we daar meer zicht op gekrege

    What do near-term observations tell us about long-term developments in greenhouse gas emissions? A letter

    Get PDF
    Long-term scenarios developed by integrated assessment models are used in climate research to provide an indication of plausible long-term emissions of greenhouse gases and other radiatively active substances based on developments in the global energy system, land-use and the emissions associated with these systems The phenomena that determine these long-term developments (several decades or even centuries) are very different than those that operate on a shorter time-scales (a few years) Nevertheless, in the literature, we still often find direct comparisons between short-term observations and long-term developments that do not take into account the differing dynamics over these time scales In this letter, we discuss some of the differences between the factors that operate in the short term and those that operate in the long term We use long-term historical emissions trends to show that short-term observations are very poor indicators of long-term future emissions developments Based on this, we conclude that the performance of long-term scenarios should be evaluated against the appropriate, corresponding long-term variables and trends The research community may facilitate this by developing appropriate data sets and protocols that can be used to test the performance of long-term scenarios and the models that produce the

    Stakeholder engagement in climate change solutions

    Get PDF
    Workshops bringing scientists together with stakeholders from various backgrounds have shown the importance of dialogue for co-designing climate pathways and highlighted the need for physical meetings and capacity building. To find and implement solutions to climate change and other complex problems that society faces, requires constructive dialogue between the research community and a wide range of other stakeholders. Since 2019, the ENGAGE project has developed and used a carefully designed stakeholder engagement process to co-design climate mitigation pathways through open discussions about a range of topics using a combination of surveys, visual tools, and presentations

    Особенности разработки термостабилизированных германиевых фотодиодов

    Get PDF
    Рассмотрены подходы к конструированию лавинных и нелавинных германиевых фотодиодов с применением эпитаксиальных структур и термоэлектрического охлаждения

    Impacts of Trade Friction and Climate Policy on Global Energy Trade Network

    Get PDF
    The trade impacts of the COVID-19 pandemic and the Russian invasion of Ukraine have raised questions about the role of trade and climate policies in energy security and global emissions. This study updates a widely used integrated assessment model (IAM), MESSAGEix-GLOBIOM, to represent complex trade networks to explicitly draw energy flows from their origins to their destination. It then examines the effects of (1) energy trade tariff policies, such as import tariffs, as a proxy to represent an unfriendly trade environment and (2) a global carbon emissions tax on the global energy trade network. Results indicate that trade tariff policies have marginal effects on the trade network, i.e., the size of trade and importing-exporting regions do not change significantly. While high import tariffs significantly reduce emissions due to reduced fossil fuel imports in the importing region, this effect does not translate to significant emission reductions globally, as trade policies only impact downstream of the energy supply chain. However, a carbon emission tax dramatically alters the trade network, by (1) reducing its size by up to 50% and (2) forming trade linkages that allow for a more complex and diverse network of suppliers. This diversity under the emissions tax scenario improves the energy security of major energy-importing regions. Moreover, under an emission tax scenario, a friendly trade environment reduces the energy system costs globally. However, trade friction, such as sanctions or high import tariffs, will increase the energy supply cost significantly, especially for energy-importing regions such as Europe, East and South Asia

    Effects of breeding habitat and field margins on the reproductive performance of Skylarks (Alauda arvensis) on intensive farmland

    Get PDF
    Field margin management is a common measure employed in Europe to support farmland bird populations. In this study we found and analysed 237 nests of the Skylark Alauda arvensis in the Netherlands over a period of 6 years to determine the effects of arable field margins and breeding crop on nest-level reproductive success. Additionally, the effect of field margins on predation was investigated and food availability in crops and field margins was compared. Neither clutch size, nest survival nor nestling body weight were improved by field margin availability, irrespective of the breeding crop used. However, the choice of breeding crop had important effects. Nestling weight was significantly lower in cereals than in grassland and lucerne, corresponding with the low prey densities present in cereals. Nest survival was lowest in grassland due to frequent silage cutting. Predation rates were highest in cereals but were not affected by field margin proximity. The highest reproductive success was achieved in lucerne, which was mown twice a year and retained a suitable height for breeding throughout the breeding season. We conclude that field margins are not sufficient to maintain a Skylark population in this intensively farmed area. The presumably more subtle effects of increased food availability cannot compensate for the high nest failure rates resulting from agricultural operations and predation. In this and similar areas, the provisioning of safe nesting habitat throughout the breeding season is essential to improve breeding performance. Our research suggests that this can be achieved by reducing the frequency of silage cutting on grassland and by increasing the surface area of lucerne.Conservation Biolog

    A multidimensional feasibility evaluation of low-carbon scenarios

    Get PDF
    Long-term mitigation scenarios developed by integrated assessment models underpin major aspects of recent IPCC reports and have been critical to identify the system transformations that are required to meet stringent climate goals. However, they have been criticized for proposing pathways that may prove challenging to implement in the real world and for failing to capture the social and institutional challenges of the transition. There is a growing interest to assess the feasibility of these scenarios, but past research has mostly focused on theoretical considerations. This paper proposes a novel and versatile multidimensional framework that allows evaluating and comparing decarbonization pathways by systematically quantifying feasibility concerns across geophysical, technological, economic, socio-cultural and institutional dimensions. This framework enables to assess the timing, disruptiveness and scale of feasibility concerns, and to identify trade-offs across different feasibility dimensions. As a first implementation of the proposed framework, we map the feasibility concerns of the IPCC 1.5 C Special Report scenarios. We select 24 quantitative indicators and propose feasibility thresholds based on insights from an extensive analysis of the literature and empirical data. Our framework is, however, flexible and allows evaluations based on different thresholds or aggregation rules. Our analyses show that institutional constraints, which are often not accounted for in scenarios, are key drivers of feasibility concerns. Moreover, we identify a clear intertemporal trade-off, with early mitigation being more disruptive but preventing higher and persistent feasibility concerns produced by postponed mitigation action later in the century
    corecore