196 research outputs found

    Early life adversity and serotonin transporter gene variation interact at the level of the adrenal gland to affect the adult hypothalamo-pituitary-adrenal axis

    Get PDF
    The short allelic variant of the serotonin transporter (5-HTT) promoter-linked polymorphic region (5-HTTLPR) has been associated with the etiology of major depression by interaction with early life stress (ELS). Furthermore, 5-HTTLPR has been associated with abnormal functioning of the stress-responsive hypothalamo-pituitary-adrenal (HPA) axis. Here, we examined if, and at what level, the HPA-axis is affected in an animal model for ELS × 5-HTTLPR interactions. Heterozygous and homozygous 5-HTT knockout rats and their wild-type littermates were exposed daily at postnatal days 2–14 to 3 h of maternal separation. When grown to adulthood, plasma levels of adrenocorticotropic hormone (ACTH), and the major rat glucocorticoid, corticosterone (CORT), were measured. Furthermore, the gene expression of key HPA-axis players at the level of the hypothalamus, pituitary and adrenal glands was assessed. No 5-HTT genotype × ELS interaction effects on gene expression were observed at the level of the hypothalamus or pituitary. However, we found significant 5-HTT genotype × ELS interaction effects for plasma CORT levels and adrenal mRNA levels of the ACTH receptor, such that 5-HTT deficiency was associated under control conditions with increased, but after ELS with decreased basal HPA-axis activity. With the use of an in vitro adrenal assay, naïve 5-HTT knockout rats were furthermore shown to display increased adrenal ACTH sensitivity. Therefore, we conclude that basal HPA-axis activity is affected by the interaction of 5- HTT genotype and ELS, and is programmed, within the axis itself, predominantly at the level of the adrenal gland. This study therefore emphasizes the importance of the adrenal gland for HPA-related psychiatric disorders

    Median raphe region stimulation alone generates remote, but not recent fear memory traces

    Get PDF
    The median raphe region (MRR) is believed to control the fear circuitry indirectly, by influencing the encoding and retrieval of fear memories by amygdala, hippocampus and prefrontal cortex. Here we show that in addition to this established role, MRR stimulation may alone elicit the emergence of remote but not recent fear memories. We substituted electric shocks with optic stimulation of MRR in C57BL/6N male mice in an optogenetic conditioning paradigm and found that stimulations produced agitation, but not fear, during the conditioning trial. Contextual fear, reflected by freezing was not present the next day, but appeared after a 7 days incubation. The optogenetic silencing of MRR during electric shocks ameliorated conditioned fear also seven, but not one day after conditioning. The optogenetic stimulation patterns (50Hz theta burst and 20Hz) used in our tests elicited serotonin release in vitro and lead to activation primarily in the periaqueductal gray examined by c-Fos immunohistochemistry. Earlier studies demonstrated that fear can be induced acutely by stimulation of several subcortical centers, which, however, do not generate persistent fear memories. Here we show that the MRR also elicits fear, but this develops slowly over time, likely by plastic changes induced by the area and its connections. These findings assign a specific role to the MRR in fear learning. Particularly, we suggest that this area is responsible for the durable sensitization of fear circuits towards aversive contexts, and by this, it contributes to the persistence of fear memories. This suggests the existence a bottom-up control of fear circuits by the MRR, which complements the top-down control exerted by the medial prefrontal cortex

    Metabolomics Applied to Diabetes Research: Moving From Information to Knowledge

    Get PDF
    Type 2 diabetes is caused by a complex set ofinteractions between genetic and environmentalfactors. Recent work has shown that human type2 diabetes is a constellation of disorders associ-ated with polymorphisms in a wide array of genes, with each individual gene accounting for 1 % of disease risk (1). Moreover, type 2 diabetes involves dysfunction of multiple organ systems, including impaired insulin action in muscle and adipose, defective control of hepatic glu-cose production, and insulin deficiency caused by loss of -cell mass and function (2). This complexity presents challenges for a full understanding of the molecular path-ways that contribute to the development of this major disease. Progress in this area may be aided by the recent advent of technologies for comprehensive metabolic anal-ysis, sometimes termed “metabolomics. ” Herein, we sum-marize key metabolomics methodologies, including nuclear magnetic resonance (NMR) and mass spectrome

    A five-year perspective on the situation of haemorrhagic fever with renal syndrome and status of the hantavirus reservoirs in Europe, 2005-2010

    Get PDF
    Hantavirus infections are reported from many countries in Europe and with highly variable annual case numbers. In 2010, more than 2,000 human cases were reported in Germany, and numbers above the baseline have also been registered in other European countries. Depending on the virus type human infections are characterised by mild to severe forms of haemorrhagic fever with renal syndrome. The member laboratories of the European Network for diagnostics of Imported Viral Diseases present here an overview of the progression of human cases in the period from 2005 to 2010. Further we provide an update on the available diagnostic methods and endemic regions in their countries, with an emphasis on occurring virus types and reservoirs

    Separating the wheat from the chaff: a prioritisation pipeline for the analysis of metabolomics datasets

    Get PDF
    Liquid Chromatography Mass Spectrometry (LC-MS) is a powerful and widely applied method for the study of biological systems, biomarker discovery and pharmacological interventions. LC-MS measurements are, however, significantly complicated by several technical challenges, including: (1) ionisation suppression/enhancement, disturbing the correct quantification of analytes, and (2) the detection of large amounts of separate derivative ions, increasing the complexity of the spectra, but not their information content. Here we introduce an experimental and analytical strategy that leads to robust metabolome profiles in the face of these challenges. Our method is based on rigorous filtering of the measured signals based on a series of sample dilutions. Such data sets have the additional characteristic that they allow a more robust assessment of detection signal quality for each metabolite. Using our method, almost 80% of the recorded signals can be discarded as uninformative, while important information is retained. As a consequence, we obtain a broader understanding of the information content of our analyses and a better assessment of the metabolites detected in the analyzed data sets. We illustrate the applicability of this method using standard mixtures, as well as cell extracts from bacterial samples. It is evident that this method can be applied in many types of LC-MS analyses and more specifically in untargeted metabolomics

    Multi-locus genome-wide association analysis supports the role of glutamatergic synaptic transmission in the etiology of major depressive disorder

    Get PDF
    Major depressive disorder (MDD) is a common psychiatric illness characterized by low mood and loss of interest in pleasurable activities. Despite years of effort, recent genome-wide association studies (GWAS) have identified few susceptibility variants or genes that are robustly associated with MDD. Standard single-SNP (single nucleotide polymorphism)-based GWAS analysis typically has limited power to deal with the extensive heterogeneity and substantial polygenic contribution of individually weak genetic effects underlying the pathogenesis of MDD. Here, we report an alternative, gene-set-based association analysis of MDD in an effort to identify groups of biologically related genetic variants that are involved in the same molecular function or cellular processes and exhibit a significant level of aggregated association with MDD. In particular, we used a text-mining-based data analysis to prioritize candidate gene sets implicated in MDD and conducted a multi-locus association analysis to look for enriched signals of nominally associated MDD susceptibility loci within each of the gene sets. Our primary analysis is based on the meta-analysis of three large MDD GWAS data sets (total N = 4346 cases and 4430 controls). After correction for multiple testing, we found that genes involved in glutamatergic synaptic neurotransmission were significantly associated with MDD (set-based association P = 6.9 X 10(-4)). This result is consistent with previous studies that support a role of the glutamatergic system in synaptic plasticity and MDD and support the potential utility of targeting glutamatergic neurotransmission in the treatment of MDD

    European survey on laboratory preparedness, response and diagnostic capacity for crimean-congo haemorrhagic fever, 2012

    Get PDF
    Crimean-Congo haemorrhagic fever (CCHF) is an infectious viral disease that has (re-)emerged in the last decade in south-eastern Europe, and there is a risk for further geographical expansion to western Europe. Here we report the results of a survey covering 28 countries, conducted in 2012 among the member laboratories of the European Network for Diagnostics of 'Imported' Viral Diseases (ENIVD) to assess laboratory preparedness and response capacities for CCHF. The answers of 31 laboratories of the European region regarding CCHF case definition, training necessity, biosafety, quality assurance and diagnostic tests are presented. In addition, we identifi

    Nesfatin-1/NUCB2 as a Potential New Element of Sleep Regulation in Rats.

    Get PDF
    STUDY OBJECTIVES: Millions suffer from sleep disorders that often accompany severe illnesses such as major depression; a leading psychiatric disorder characterized by appetite and rapid eye movement sleep (REMS) abnormalities. Melanin-concentrating hormone (MCH) and nesfatin-1/NUCB2 (nesfatin) are strongly co - expressed in the hypothalamus and are involved both in food intake regulation and depression. Since MCH was recognized earlier as a hypnogenic factor, we analyzed the potential role of nesfatin on vigilance. DESIGN: We subjected rats to a 72 h-long REMS deprivation using the classic flower pot method, followed by a 3 h-long 'rebound sleep'. Nesfatin mRNA and protein expressions as well as neuronal activity (Fos) were measured by quantitative in situ hybridization technique, ELISA and immunohistochemistry, respectively, in 'deprived' and 'rebound' groups, relative to controls sacrificed at the same time. We also analyzed electroencephalogram of rats treated by intracerebroventricularly administered nesfatin-1, or saline. RESULTS: REMS deprivation downregulated the expression of nesfatin (mRNA and protein), however, enhanced REMS during 'rebound' reversed this to control levels. Additionally, increased transcriptional activity (Fos) was demonstrated in nesfatin neurons during 'rebound'. Centrally administered nesfatin-1 at light on reduced REMS and intermediate stage of sleep, while increased passive wake for several hours and also caused a short-term increase in light slow wave sleep. CONCLUSIONS: The data designate nesfatin as a potential new factor in sleep regulation, which fact can also be relevant in the better understanding of the role of nesfatin in the pathomechanism of depression
    corecore