1,106 research outputs found
Mathematical specifications of the Onboard Navigation Package (ONPAC) simulator (revision 1)
The mathematical theory of the computational algorithms employed in the onboard navigation package system is described. This system, which simulates an onboard navigation processor, was developed to aid in the design and evaluation of onboard navigation software. The mathematical formulations presented include the factorized UDU(T) form of the extended Kalman filter, the equations of motion of the user satellite, the user clock equations, the observation equations and their partial derivatives, the coodinate transformations, and the matrix decomposition algorithms
Speculations on nature and extent of Archean basement in Labrador as indicated by SR, ND and PB isotopic systematics of proterozoic intrusives
The Sm-Nd and Rb-Sr isotopic compositions of mid to late Proterozoic (approximately 1.6 to 1.1 Ga) massif-type anorthosites and mafic intrusives in the eastern Canadian shield are correlated with geographic location. Complexes in the Grenville province have positive epsilon sub Nd values and initial Sr-87/Sr-86 (I sub Sr) generally less than 0.703, suggesting derivation from depleted mantle. In Labrador, similar complexes close to or northwest of a line roughly corresponding to the Grenville Front have negative epsilon sub Nd values and I sub Sr 0.703. This contrast was intrepreted as reflecting either enriched mantle under the Nain Province, or contamination of the Nain intrusives with older crustal components. Lead isotopic compositions, however, favor the latter. The possibility of using these Proterozoic intrusives as tracers to characterize the nature and extent of older basement types in Labrador is discussed
Particle transport in evolving protoplanetary disks: Implications for results from Stardust
Samples returned from comet 81P/Wild 2 by Stardust confirm that substantial
quantities of crystalline silicates were incorporated into the comet at
formation. We investigate the constraints that this observation places upon
protoplanetary disk physics, assuming that outward transport of particles
processed at high temperatures occurs via advection and turbulent diffusion in
an evolving disk. We also look for constraints on particle formation locations.
Our results are based upon 1D disk models that evolve with time under the
action of viscosity and photoevaporation, and track solid transport using an
ensemble of individual particle trajectories. We find that two classes of disk
model are consistent with the Stardust findings. One class features a high
particle diffusivity (a Schmidt number Sc < 1), which suffices to diffuse
particles up to 20 microns in size outward against the mean gas flow. For Sc >
1, such models are unlikely to be viable, and significant outward transport
requires that the particles of interest settle into a midplane layer that
experiences an outward gas flow. In either class of models, the mass of inner
disk material that reaches the outer disk is a strong function of the disk's
initial compactness. Hence, models of grain transport within steady-state disks
underestimate the efficiency of outward transport. Neither model results in
sustained outward transport of very large particles exceeding a mm in size. We
show that the transport efficiency generally falls off rapidly with time.
Hence, high-temperature material must be rapidly incorporated into icy bodies
to avoid fallback, and significant radial transport may only occur during the
initial phase of rapid disk evolution. It may also vary substantially between
disks depending upon their initial mass distributions. We discuss implications
for Spitzer observations of crystalline silicates in T Tauri disks.Comment: ApJ, in pres
CULTURAL COMMUNITY, COHESION AND CONSTRAINT: DYNAMICS OF LIFE SATISFACTION AMONG AGED FILIPINO MEN OF HAWAII
In contrast to other elderly Asian-Americans (notably Japanese Americans and Chinese Americans), relatively little is known about aged Filipino Americans (Kalish & Yuen, 1971). This may be partly a function of their population size, as the Filipino aged in America are considerably less numerous than the elderly Japanese and Chinese Americans; the 1970 U.S. Censes (Census) of the Population finds only 21,249 Filipinos aged 65 and over in the U.S., 82% of them men. In addition, low economic and political status, recency of arrival and relative lack of militancy may contribute to this inattention. Kalish and Moriwaki (1973), focusing on elderly Chinese and Japanese Americans, explained their emphasis on the former and apologized for ignoring the Filipino American aged, noting that they understood much less about them
Spectral structure near the 11.3 micron emission feature
If the 11.3 micron emission feature seen in the spectra of many planetary nebulae, H II regions, and reflection nebulae is attributable to polycyclic aromatic hydrocarbons (PAHs), then additional features should be present between 11.3 and 13.0 microns. Moderate resolution spectra of NGC 7027, HD 44179, BD+30 deg 3639, and IRAS 21282+5050 are presented which show evidence for new emission features centered near 12.0 and 12.7 microns. These are consistent with an origin from PAHs and can be used to constrain the molecular structure of the family of PAHs responsible for the infrared features. There is an indication that coronene-like PAHs contribute far more to the emission from NGC 7027 than to the emission from HD 44179. The observed asymmetric profile of the 11.3 micron band in all the spectra is consistent with the slight anharmonicity expected in the C-H out-of-plane bending mode in PAHs. A series of repeating features between 10 and 11 microns in the spectrum of HD 44179 suggests a simple hydride larger than 2 atoms is present in the gas phase in this object
Infrared spectra of WC10 planetary nebulae nuclei
The 5.2 to 8.0 micron spectra are presented for two planetary nebulae nuclei Hen1044 (He2-113) and CPD-56 8032. The unidentified infrared (UIR) emission bands at 6.2 microns, 6.9 microns, 7.7 microns are present in the spectra of Hen1044 and in CPD-56 8032, and the 8.6 micron band is present in the long wavelength shoulder of the 7.7 micron band in the spectrum of CPD-56 8032. The 8 to 13 micron spectra of these two stars by Aitken et. al. clearly show the presence of the 8.6 micron band in He2-113 while weakly resolving this feature in the spectra of CPD-56 8032. In their spectra the 11.3 micron band is also clearly detected in both objects. The 6.2 micron and 7.7 micron bands are characteristic of the infrared active C-C stretching modes in polycyclic aromatic hydrocarbons (PAHs); the 3.3 micron, 8.6 micron, and 11.3 micron bands are respectively assigned to the in-plane stretching mode, the in-plane bending mode, and the out-of-plane bending mode of the aromatic CH bond. The weak 6.9 micron emission feature is attributed to the UIR spectrum by Bregman et. al. The IRAS LRS spectra of He2-113 (IRAS 14562-5406) and CPD-56 8032 (IRAS 17047-5650) are presented. Cohen et. al. identify the broad plateau from 11.3 to 13.0 microns in the spectrum of He2-113 with increased hydrogenation of PAHs. This broad plateau is not seen in the LRS spectrum of CPD-56 8032. Also, He2-113 has greater infrared excess emission in the 17-22 micron region than does CPD-56 8032
Lithofacies Control in Detrital Zircon Provenance Studies: Insights from the Cretaceous Methow Basin, Southern Canadian Cordillera
High-frequency sampling for detrital zircon analysis can provide a detailed record of fine-scale basin evolution by revealing the temporal and spatial variability of detrital zircon ages within clastic sedimentary successions. This investigation employed detailed sampling of two sedimentary successions in the Methow/Methow-Tyaughton basin of the southern Canadian Cordillera to characterize the heterogeneity of detrital zircon signatures within single lithofacies and assess the applicability of detrital zircon analysis in distinguishing fine-scale provenance changes not apparent in lithologic analysis of the strata. The Methow/Methow-Tyaughton basin contains two distinct stratigraphic sequences of middle Albian to Santonian clastic sedimentary rocks: submarine-fan deposits of the Harts Pass Formation/Jackass Mountain Group and fluvial deposits of the Winthrop Formation. Although both stratigraphic sequences displayed consistent ranges in detrital zircon ages on a broad scale, detailed sampling within each succession revealed heterogeneity in the detrital zircon age distributions that was systematic and predictable in the turbidite succession but unpredictable in the fluvial succession. These results suggest that a high-density sampling approach permits interpretation of fine-scale changes within a lithologically uniform turbiditic sedimentary succession, but heterogeneity within fluvial systems may be too large and unpredictable to permit accurate fine-scale characterization of the evolution of source regions. The robust composite detrital zircon age signature developed for these two successions permits comparison of the Methow/Methow-Tyaughton basin age signature with known plutonic source-rock ages from major plutonic belts throughout the Cretaceous North American margin. The Methow/Methow-Tyaughton basin detrital zircon age signature matches best with source regions in the southern Canadian Cordillera, requiring that the basin developed in close proximity to the southern Canadian Cordillera and providing evidence against large-scale dextral translation of the Methow terrane
Does the Great Valley Group Contain Jurassic Strata? Reevaluation of the Age and Early Evolution of a Classic Forearc Basin
The presence of Cretaceous detrital zircon in Upper Jurassic strata of the Great Valley Group may require revision of the lower Great Valley Group chronostratigraphy, with significant implications for the Late Jurassic–Cretaceous evolution of the continental margin. Samples (n = 7) collected from 100 km along strike in the purported Tithonian strata of the Great Valley Group contain 20 Cretaceous detrital zircon grains, based on sensitive high-resolution ion microprobe age determinations. These results suggest that Great Valley Group deposition was largely Cretaceous, creating a discrepancy between biostratigraphy based on Buchia zones and chronostratigraphy based on radiometric age dates. These results extend the duration of the Great Valley Group basal unconformity, providing temporal separation between Great Valley forearc deposition and creation of the Coast Range Ophiolite. If Great Valley forearc deposition began in Cretaceous time, then sediment bypassed the developing forearc in the Late Jurassic, or the Franciscan subduction system did not fully develop until Cretaceous time. In addition to these constraints on the timing of deposition, pre-Mesozoic detrital zircon age signatures indicate that the Great Valley Group was linked to North America from its inception
- …